# NOT RUN {
## Performs a specific MCA on 'Taste' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## then performs hierarchical clustering and
## partitions the individuals into 3 clusters,
## draws the cloud of individuals
## and adds convex hulls for the clusters.
data(Taste)
getindexcat(Taste)
mca <- speMCA(Taste[,1:11],excl=c(3,6,9,12,15,18,21,24,27,30,33))
d <- dist(mca$ind$coord[,c(1,2)])
hca <- hclust(d, "ward.D2")
cluster <- factor(cutree(hca, 3))
p <- ggcloud_indiv(mca, col='black')
ggadd_chulls(p, mca, cluster)
# }
Run the code above in your browser using DataLab