GDAtools
Geometric Data Analysis and other descriptive techniques
GDAtools
provides functions for Geometric Data Analysis :
- specific Multiple Correspondence Analysis (speMCA)
- Class Specific Analysis (csMCA)
- Multiple Factor Analysis (multiMCA)
- "standardized" Multiple Correspondence Analysis (stMCA)
- guides for interpretation (test-values, contributions, etc.)
- inductive tests
- analysis of structuring factors (concentration ellipses, interactions, etc.)
- graphical representations (with and without
ggplot2
)
Besides, it also provides :
- several functions for bivariate associations between variables (phi coefficients, Cramer's V, correlation coefficients, eta-squared, etc.),
- plotting functions for bivariate associations between variables,
- the translation of logit models coefficients into percentages,
- weighted contingency tables,
- an underrated association measure for contingency tables ("Percentages of Maximum Deviation from Independence", aka PEM).
Documentation
Please visit https://nicolas-robette.github.io/GDAtools/ for documentation
Installation
Execute the following code within R
:
if (!require(devtools)){
install.packages('devtools')
library(devtools)
}
install_github("nicolas-robette/GDAtools")
References
Bry X., Robette N., Roueff O., 2016, « A dialogue of the deaf in the statistical theater? Adressing structural effects within a geometric data analysis framework », Quality & Quantity, 50(3), pp 1009–1020 [https://link.springer.com/article/10.1007/s11135-015-0187-z]
Le Roux B. and Rouanet H., 2010, Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks.
Le Roux B. and Rouanet H., 2004, Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht.
Deauvieau J., 2019, « Comparer les resultats d’un modele logit dichotomique ou polytomique entre plusieurs groupes a partir des probabilites estimees », Bulletin de Methodologie Sociologique, 142(1), 7-31.
Cibois P., 1993, « Le PEM, pourcentage de l'ecart maximum : un indice de liaison entre modalites d'un tableau de contingence », Bulletin de Methodologie Sociologique, 40, pp 43-63, [http://cibois.pagesperso-orange.fr/bms93.pdf]
Rakotomalala R., « Comprendre la taille d'effet (effect size) », [http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf]