Learn R Programming

GDAtools (version 1.7.2)

dimeta2: Describes the eta2 of supplementary variables for the axes of a MCA

Description

Computes eta2 for a list of supplementary variables. It allows to analyze variants of MCA, such as 'specific' MCA or 'class specific' MCA.

Usage

dimeta2(resmca, vars, dim = c(1,2))

Value

Returns a data frame with supplementary variables as rows and axes as columns.

Arguments

resmca

object of class MCA, speMCA, csMCA, stMCA or multiMCA

vars

a data frame of supplementary variables

dim

the axes for which eta2 are computed. Default is c(1,2)

Author

Nicolas Robette

References

Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).

Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).

See Also

dimdesc, dimdescr, dimcontrib, condes, speMCA, csMCA, dimtypicality

Examples

Run this code
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then describes the eta2 for Gender and Age (axes 1 and 2).
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
dimeta2(mca, Music[,c("Gender","Age")])

Run the code above in your browser using DataLab