Learn R Programming

GFORCE: An R package for high-dimensional clustering and inference in cluster-based graphical models

Author: Carson Eisenach

Please send all correspondence to eisenach [AT] princeton.edu.

Summary

This is the current development version of the GFORCE package.

This package provides implementations of state-of-the-art clustering algorithms and inference procedures introduced in

  • Eisenach, C. and Liu, H. (2017). Efficient, Certifiably Optimal High-Dimensional Clustering. arXiv:1806.00530.
  • Eisenach, C., Bunea, F., Ning, Y. and Dinicu, C. (2018). Efficient, High-Dimensional Inference for Cluster-Based Graphical Models. Manuscript submitted for publication.

The new methods implemented include:

  • FORCE - a fast solver for a semi-definite programming (SDP) relaxation of the K-means problem. For certain data generating distributions it produces a certificate of optimality with high probability, and
  • Inferential procedures and FDR control for cluster based graphical models.

Also provided are high quality implementations of traditional clustering algorithms:

  • Lloyd's algorithm,
  • kmeans++ initializations,
  • hierarchical clustering

Copy Link

Version

Install

install.packages('GFORCE')

Monthly Downloads

7

Version

0.1.4

License

GPL-2

Maintainer

Carson Eisenach

Last Published

April 7th, 2019

Functions in GFORCE (0.1.4)

gforce.PECOK

Solve PECOK with FORCE.
gforce.PECOK_adapt

Solve PECOK Adaptive SDP with FORCE.
gforce.FDR_control

FDR Control Procedure.
gforce.FORCE

FORCE \(K\)-means solver.
gforce.hclust.agglomerate

Hierarchical Clustering Agglomeration.
gforce.kmeans

K-means Clustering.
gforce.certify

FORCE optimality certificate.
gforce.glatent_confints

Confidence Intervals for Estimation in G-Latent Models.
gforce.glatent_confints.cv_defaults

Default Cross Validation Options for Confidence Intervals.
gforce.scio

SCIO Estimator.
gforce.FORCE_adapt

FORCE \(K\)-means solver.
gforce.certify_adapt

FORCE optimality certificate (\(K\) is unknown).
gforce.defaults

FORCE default tuning parameters.
gforce.generator

Data generator.
gforce.confint2test

Convert confidence intervals to equivalent test statistics.
gforce.clust2mat

Convert a clustering or grouping to partnership matrix.
gforce.Gamma

Estimates \(\Gamma\) for the PECOK SDP.
gforce.kmeans_SDP_matrix

K-means SDP Matrices.
gforce.metrics

Evaluates the correctness of a clustering solution.
gforce.hclust

Hierarchical Clustering with Estimation of \(K\).
gforce.hclust.agg2clust

Hierarchical Clustering -- Convert Agglomeration to clustering.