powered by
In particular, it returns in diagonal form the estimator \(\Gamma\) used to construct the PECOK penalized covariance estimator.
gforce.Gamma(X, par = FALSE, fast_estimator = FALSE, R_only = FALSE)
\(n x d\) matrix. Each row represents a realization of a \(d\) dimensional random vector.
logical expression. If par == TRUE, then a multi-threaded version of the function is called. If par == FALSE, a single-threaded version is called.
par == TRUE
par == FALSE
logical expression. If fast_estimator == TRUE, then the alternative estimator for \(\hat \Gamma\) is used.
fast_estimator == TRUE
logical expression. If R_only == TRUE, then no native code is run. If fast_estimator != TRUE this is ignored.
R_only == TRUE
fast_estimator != TRUE
The estimator \(\Gamma\) as a \(d\) dimensional numeric vector.
F. Bunea, C. Giraud, M. Royer and N. Verzelen. PECOK: a convex optimization approach to variable clustering. arXiv:1606.05100, 2016.
# NOT RUN { dat <- gforce.generator(5,20,20,3) gam_hat <- gforce.Gamma(dat$X) # }
Run the code above in your browser using DataLab