Unlimited learning, half price | 50% off
Get 50% off unlimited learning

GSNA version 0.1.4.2

Jonathan M. Urbach

Ragon Institute of MGH, MIT, and Harvard

2024-03-18

GSNA stands for Gene Set Network Analysis. GSNA is a toolkit for clustering gene sets based on metrics of similarity and distance such as the Jaccard and Szymkiewicz–Simpson overlap indices, and log Fisher p-values. The intended purpose of the GSNA package to provide a means to simplify data sets generated by pathways analysis methods such as GSEA (Subramanian et al. (2005),Mootha et al. (2003)), and CERNO (Zyla et al. (2019)). GSNA can be used subsequent to pathways analysis methods that generate lists of gene sets with associated significance statistics, e.g. p-values. From such data, groups of similar pathways are inferred, greatly simplifying the task of analyzing complex pathways datasets. On the basis of similarity, networks and clusters (or subnets) can be generated and represented graphically, and statistical parameters can be assessed.

Dependencies

We recommend R version 4.0 and later for GSNA, though it may be installable on some later R version 3 distributions. In addition to base R, the GSNA package requires some other R packages including the following:

  • circlize
  • DT
  • dendextend
  • dplyr
  • ggplot2
  • graphics
  • grDevices
  • igraph
  • Matrix
  • methods
  • psych
  • raster
  • stringr
  • stringi
  • stats
  • tibble
  • tidyr
  • tmod
  • utils
  • withr
  • Rcpp

Several of these packages have cascading dependencies, which become particularly important when installing from source. If binary R packages are available, such as for up-to-date Windows and Mac OS X R installations, we recommend installing those. Compiling these packages from source generally requires a C, C++, and/or Fortran compiler, which on Windows means installing Rtools for Windows, and for Mac OS X, Xcode. Linux installations generally include the required compilers, specifically the GCC compilers.

NOTE: Particular care should be paid to the installation of the R raster package. The raster package requires the terra package, which in turn requires the GEOS C++ computational library, available from https://libgeos.org/ to compile from source. Binary packages for the GEOS library are available for numerous Linux distributions, and may offer a more convenient alternative than installing GEOS from source.

Installation

We intend to make the GSNA package available on CRAN in the near future. If and when it is accepted by CRAN, you will be able to install **GSNA using the following command:

install.packages('GSNA')

In the meantime, if you have the devtools package installed, you can install the development version of GSNA directly from GitHub like so:

devtools::install_github( repo = "https://github.com/JonathanUrbach/GSNA" )

Note: Currently, this method omits installation of the package’s Roxygen2 man pages.

If you have downloaded the source code from GitHub and opened the project in an Rstudio session, the following command can be used to install the package, including documentation:

devtools::install( build_vignettes = TRUE, args = "--no-multiarch --with-keep.source" )

Loading GSNA and Accessing Documentation

To load GSNA, type the following in your R console:

library( GSNA )

To access a vignette containing additional information and usage examples, run:

vignette( "using_the_gsna_package" )

A package description and a list of function documentation can be obtained via:

help( package = "GSNA" )

Citing GSNA

To cite package GSNA in publications, please use:

Collins, R. D, Urbach, M. J, Racenet, J. Z, Arshad, Umar, Power, A. K, Newman, M. R, Mylvaganam, H. G, Ly, L. N, Lian, Xiaodong, Rull, Anna, Rassadkina, Yelizaveta, Yanez, G. A, Peluso, J. M, Deeks, G. S, Vidal, Francesc, Lichterfeld, Mathias, Yu, G. X, Gaiha, D. G, Allen, M. T, Walker, D. B (2021). “Functional impairment of HIV-specific CD8+ T cells precedes aborted spontaneous control of viremia.” Immunity, S107476132100337X. doi:10.1016/j.immuni.2021.08.007 https://doi.org/10.1016/j.immuni.2021.08.007, https://linkinghub.elsevier.com/retrieve/pii/S107476132100337X.

Collins, R. D, Hitschfel, Julia, Urbach, M. J, Mylvaganam, H. G, Ly, L. N, Arshad, Umar, Racenet, J. Z, Yanez, G. A, Diefenbach, J. T, Walker, D. B (2023). “Cytolytic CD8+ T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes.” Science Immunology, 8(83), eade5872. doi:10.1126/sciimmunol.ade5872 https://doi.org/10.1126/sciimmunol.ade5872, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231436.

References

Mootha, Vamsi K., Cecilia M. Lindgren, Karl-Fredrik Eriksson, Aravind Subramanian, Smita Sihag, Joseph Lehar, Pere Puigserver, et al. 2003. “PGC-1α-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes.” Nature Genetics 34 (3): 267–73. https://doi.org/10.1038/ng1180.

Subramanian, Aravind, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, et al. 2005. “Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles.” Proceedings of the National Academy of Sciences 102 (43): 15545–50. https://doi.org/10.1073/pnas.0506580102.

Zyla, Joanna, Michal Marczyk, Teresa Domaszewska, Stefan H E Kaufmann, Joanna Polanska, and January Weiner 3rd. 2019. “Gene Set Enrichment for Reproducible Science: Comparison of CERNO and Eight Other Algorithms.” Bioinformatics 35 (24): 5146–54. https://doi.org/10.1093/bioinformatics/btz447.

Copy Link

Version

Install

install.packages('GSNA')

Monthly Downloads

7

Version

0.1.4.2

License

GPL (>= 3)

Maintainer

Jonathan M Urbach

Last Published

March 18th, 2024

Functions in GSNA (0.1.4.2)

buildGeneSetNetworkJaccard

buildGeneSetNetworkJaccard
Bai_data

Bai et al. Data Sets.
GSNData

GSNData
gsIntersectCounts

gsIntersectCounts
color2IntV

color2IntV
gsc2tmod

gsc2tmod
contrasting_color

contrasting_color
distMat2Rank

distMat2Rank
distMat2UnitNormRank

distMat2UnitNormRank negDistMat2UnitNormRank
buildGeneSetNetworkLF

buildGeneSetNetworkLF, buildGeneSetNetworkLFFast-deprecated
gsnFilterGeneSetCollectionList

gsnFilterGeneSetCollectionList
gsnHierarchicalDendrogram

gsnHierarchicalDendrogram
buildGeneSetNetworkOC

buildGeneSetNetworkOC
gsnImportGenericPathways

gsnImportGenericPathways
gsnORAtest

gsnORAtest
gsnImportGSEA

gsnImportGSEA
combineRGBMatrices

combineRGBMatrices
gsnMergePathways

gsnMergePathways
gsnImportGSNORA

gsnImportGSNORA
gsnPareNetGenericHierarchic

gsnPareNetGenericHierarchic
gsnParedVsRawDistancePlot

gsnParedVsRawDistancePlot
gsnPlotNetwork

gsnPlotNetwork
gsnPareNetGenericToNearestNNeighbors

gsnPareNetGenericToNearestNNeighbors
makeTwoColorEncodeFunction

makeTwoColorEncodeFunction
nzLog10

nzLog10
complement

complement
gsnAddPathwaysData

gsnAddPathwaysData
extract_david_GSC

extract_david_GSC
nzLog10.old

nzLog10.old
gsnORAtest_cpp

gsnORAtest_cpp
gsn_default_distance

gsn_default_distance, gsn_distances, pw_id_col, pw_stat_col, pw_sig_order, pw_stat_col_2, pw_sig_order_2, pw_n_col, pw_type
tmod2gsc

tmod2gsc
negative

negative
gsnAssignSubnets

gsnAssignSubnets
pick_MappedGeneSymbol

pick_MappedGeneSymbol
gsnSubnetSummary

gsnSubnetSummary
gsIntersect

gsIntersect
plot.GSNData

plot plot.GSNData
lfisher_cpp

lfisher_cpp
gsnSubset

gsnSubset
write_gmt

write_gmt
lse

lse
scoreLFMatrix_C

scoreLFMatrix_C
yassifyPathways

yassifyPathways
scoreOCMatrix_C

scoreOCMatrix_C
gsnDendroSubnetColors

gsnDendroSubnetColors, gsnDendroSubnetColors_dark
gsnDistanceHistogram

gsnDistanceHistogram
makeFilteredGenePresenceAbsenceMatrix

makeFilteredGenePresenceAbsenceMatrix
gsnImportCERNO

gsnImportCERNO
makeLinearNColorGradientFunction

makeLinearNColorGradientFunction
gsnImportDAVID

gsnImportDAVID
print.GSNData

print.GSNData
gsnToIgraph

gsnToIgraph
read_david_data_file

read_david_data_file
intV2Color

intV2Color
makeOneColorEncodeFunction

makeOneColorEncodeFunction
makeSymmetricDist

makeSymmetricDist
read_gmt

read_gmt
scoreJaccardMatrix_C

scoreJaccardMatrix_C
buildGeneSetNetworkSTLF

buildGeneSetNetworkSTLF
buildGeneSetNetworkGeneric

buildGeneSetNetworkGeneric