Learn R Programming

HIBAG (version 1.8.3)

hlaPublish: Finalize a HIBAG model

Description

Finalize a HIBAG model by removing unused SNP predictors and adding appendix information (platform, training set, authors, warning, etc)

Usage

hlaPublish(mobj, platform=NULL, information=NULL, warning=NULL, rm.unused.snp=TRUE, anonymize=TRUE, verbose=TRUE)

Arguments

mobj
platform
the text of platform information
information
the other information, like authors
warning
any warning message
rm.unused.snp
if TRUE, remove unused SNPs from the model
anonymize
if TRUE, remove sample IDs
verbose
if TRUE, show information

Value

Returns a new object of hlaAttrBagObj.

See Also

hlaModelFromObj, hlaModelToObj

Examples

Run this code
# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 250   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))


#
# train a HIBAG model
#
set.seed(1000)

# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
summary(model)
length(model$snp.id)

mobj <- hlaPublish(model,
    platform = "Illumina 1M Duo",
    information = "Training set -- HapMap Phase II")
model2 <- hlaModelFromObj(mobj)
length(mobj$snp.id)
mobj$appendix
summary(mobj)

p1 <- predict(model, train.geno)
p2 <- predict(model2, train.geno)

# check
cbind(p1$value, p2$value)

Run the code above in your browser using DataLab