Learn R Programming

HIBAG (version 1.8.3)

print.hlaAttrBagClass: Summarize a ``hlaAttrBagClass'' or ``hlaAttrBagObj'' object.

Description

Summarize an object of hlaAttrBagClass or hlaAttrBagObj.

Usage

"print"(x, ...) "print"(x, ...) "summary"(object, show=TRUE, ...) "summary"(object, show=TRUE, ...)

Arguments

object
show
if TRUE, show information
...
further arguments passed to or from other methods

Value

print returns NULL.summary.hlaAttrBagClass and summary.hlaAttrBagObj return a list:
num.classifier
the total number of classifiers
num.snp
the total number of SNPs
snp.id
SNP IDs
snp.position
SNP position in basepair
snp.hist
the number of classifier for each SNP, and it could be used for SNP importance
info
a data.frame for the average number of SNPs (num.snp), haplotypes (num.haplo), out-of-bag accuracies (accuracy) among all classifiers: mean, standard deviation, min, max

See Also

plot.hlaAttrBagClass, plot.hlaAttrBagObj

Examples

Run this code
# make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 100   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(1000)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
print(model)

Run the code above in your browser using DataLab