Package: |
HIest |
Type: |
Package |
Version: |
1.0 |
Date: |
2012-02-13 |
License: |
GPL 3.0 |
LazyLoad: |
yes |
Fitzpatrick, B. M. 2012. Estimating ancestry and heterozygosity of hybrids using molecular markers. BMC Evolutionary Biology 12:131. http://www.biomedcentral.com/1471-2148/12/131
Fitzpatrick, B. M. Alternative forms for genomic clines (in review)
Lynch, M. 1991. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622-629.
## Not run:
# data(Bluestone)
#
# ######################
# # Fit genomic clines #
# ######################
#
# data(Bluestone)
# BS.fit <- Cline.fit(Bluestone[,1:12],model=c("logit.logistic","Barton"))
# Cline.plot(BS.fit)
#
# ########################################
# # Estimate ancestry and heterozygosity #
# ########################################
#
# Bluestone <- replace(Bluestone,is.na(Bluestone),-9)
#
# # parental allele frequencies (assumed diagnostic)
# BS.P <- data.frame(Locus=names(Bluestone),Allele="BTS",P1=1,P2=0)
#
# # estimate ancestry and heterozygosity
# BS.est <-HIC(Bluestone)
#
# # calculate likelihoods for early generation hybrid classes
# BS.class <- HIclass(Bluestone,BS.P,type="allele.count")
#
# # compare classification with maximum likelihood estimates
# BS.test <- HItest(BS.class,BS.est,thresholds=c(2,2))
#
# table(BS.test$c1)
# # all 41 are TRUE, meaning the best classification is at least 2 log-likelihood units
# # better than the next best
#
# table(BS.test$c2)
# # 2 are TRUE, meaning the MLE S and H are within 2 log-likelihood units of the best
# # classification, i.e., the simple classification is rejected in all but 2 cases
#
# table(BS.test$Best.class,BS.test$c2)
# # individuals were classified as F2-like (class 3) or backcross to CTS (class 4), but
# # only two of the F2's were credible
#
# BS.test[BS.test$c2,]
# # in only one case was the F2 classification a better fit (based on AIC) than the
# # continuous model.
#
# # equivalent to the AIC criterion:
# BS.test <- HItest(BS.class,BS.est,thresholds=c(2,1))
#
# #########################
# # three-way hybrid zone #
# #########################
#
# # for example: make each parental, F1, F2, and backcross
# G <- rbind(
# rep(1,12),rep(1,12),
# rep(2,12),rep(2,12),
# rep(3,12),rep(3,12),
# rep(1,12),rep(2,12),
# rep(1:2,each=6),rep(1:2,6),
# rep(1,12),rep(1:2,6),
# rep(2,12),rep(1:2,6),
# rep(1,12),rep(3,12),
# rep(c(1,3),each=6),rep(c(1,3),6),
# rep(1,12),rep(c(1,3),6),
# rep(3,12),rep(c(1,3),6),
# rep(2,12),rep(3,12),
# rep(2:3,each=6),rep(2:3,6),
# rep(3,12),rep(2:3,6),
# rep(2,12),rep(2:3,6)
# )
#
# # 12 diagnostic markers
# P <- data.frame(Locus=rep(1:12,each=3), allele=rep(1:3,12), P1=rep(c(1,0,0),12),
# P2=rep(c(0,1,0),12), P3=rep(c(0,0,1),12))
#
# # find MLE with simulated annealing ... takes a few minutes with default iterations
# # Est <- threeway(G,P,method="SANN",surf=FALSE)
#
# # shortcut for diagnostic markers
# Est <- HIC3(G,P)
# CL <- thirdclass(G,P)
# ## End(Not run)
Run the code above in your browser using DataLab