## Not run:
# ## all possible 2-way crosses after 2 generations
# G <- rbind(
# rep(1,12),rep(1,12), # parental 1
# rep(2,12),rep(2,12), # parental 2
# rep(3,12),rep(3,12), # parental 3
# rep(1,12),rep(2,12), # 1 x 2 F1
# rep(1:2,each=6),rep(1:2,6), # 1 x 2 F2
# rep(1,12),rep(1:2,6), # 1 x 1 x 2 BC
# rep(2,12),rep(1:2,6), # 1 x 2 x 2 BC
# rep(1,12),rep(3,12), # 1 x 3 F1
# rep(c(1,3),each=6),rep(c(1,3),6), # 1 x 3 F2
# rep(1,12),rep(c(1,3),6), # 1 x 1 x 3 BC
# rep(3,12),rep(c(1,3),6), # 1 x 3 x 3 BC
# rep(2,12),rep(3,12), # 2 x 3 F1
# rep(2:3,each=6),rep(2:3,6), # 2 x 3 F2
# rep(3,12),rep(2:3,6), # 2 x 3 x 3 BC
# rep(2,12),rep(2:3,6) # 2 x 2 x 3 BC
# )
#
# P <- data.frame(Locus=rep(1:12,each=3),allele=rep(1:3,12),P1=rep(c(1,0,0),12),
# P2=rep(c(0,1,0),12),P3=rep(c(0,0,1),12))
#
# Est <- HIC3(G,P)
# Class <- thirdclass(G,P)
# HItest3(Class,Est)
#
# ## now for some three-way mixes
# G3 <- matrix(1+rbinom(200,2,.5),ncol=10)
# Est3 <- HIC3(G3,P)
# Class3 <- thirdclass(G3,P)
# HItest3(Class3,Est3) # usually all classifications will be impossible because all
# # individuals will have nonzero contributions from each of the
# # three parentals
#
# ## bias toward parental 1
# G3 <- matrix(1+rbinom(200,2,.25),ncol=10)
# Est3 <- HIC3(G3,P)
# Class3 <- thirdclass(G3,P)
# HItest3(Class3,Est3) # now you might have a few that look like F2's
# # between 1 and 2 (c110200)
# ## End(Not run)
Run the code above in your browser using DataLab