# \donttest{
######## Example 1: Generate simulation data and apply this method to analysis #######
n <- 200 # The sample size of each subgroup
p <- 20 # The dimension of the precision matrix
K <- 3 # The true number of subgroups
N <- rep(n,K) # The sample sizes of K subgroups
################ The true parameters ################
mue <- 1.5
nonnum <- 4
mu01 <- c(rep(mue,nonnum),rep(-mue,nonnum),rep(0,p-2*nonnum))
mu02 <- c(rep(mue,2*nonnum),rep(0,p-2*nonnum))
mu03 <- c(rep(-mue,2*nonnum),rep(0,p-2*nonnum))
# Power law network
set.seed(2)
A.list <- Power.law.network(p,s=5,I2=c(1),I3=c(2))
Theta01 <- A.list$A1
Theta02 <- A.list$A2
Theta03 <- A.list$A3
sigma01 <- solve(Theta01)
sigma02 <- solve(Theta02)
sigma03 <- solve(Theta03)
Mu0.list <- list(mu01,mu02,mu03)
Sigma0.list <- list(sigma01,sigma02,sigma03)
Theta0.list <- list(Theta01,Theta02,Theta03)
################ Generating simulated data ################
whole.data <- generate.data(N,Mu0.list,Theta0.list,Sigma0.list)
################ The implementation and evaluation of competitors ################
lambda <- genelambda.obo(nlambda1=5,lambda1_max=0.5,lambda1_min=0.1,
nlambda2=15,lambda2_max=1.5,lambda2_min=0.1)
res <- PGGMBC(lambda, whole.data$data, K, initial.selection="K-means")
Theta_hat.list <- res$Theta_hat.list
Mu_hat.list <- res$Mu_hat.list
prob.list <- res$prob.list
L.mat.list <- res$L.mat.list
opt_num <- res$Opt_num
opt_Theta_hat <- Theta_hat.list[[opt_num]]
opt_Mu_hat <- Mu_hat.list[[opt_num]]
opt_L.mat <- L.mat.list[[opt_num]]
opt_prob <- prob.list[[opt_num]]
######## Example 2: Call the built-in simulation data set and analyze #######
data(example.data)
K <- 3
lambda <- genelambda.obo(nlambda1=5,lambda1_max=0.5,lambda1_min=0.1,
nlambda2=15,lambda2_max=1.5,lambda2_min=0.1)
res <- PGGMBC(lambda, example.data$data, K, initial.selection="K-means")
Theta_hat.list <- res$Theta_hat.list
opt_num <- res$Opt_num
opt_Theta_hat <- Theta_hat.list[[opt_num]]
# }
Run the code above in your browser using DataLab