# NOT RUN {
#Note: more examples can be found at
#https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1650-8
## -------------------------------------------------------
## Example from \code{\link[party]{varimp}} in \pkg{party}
## Classification RF
## -------------------------------------------------------
# }
# NOT RUN {
library(party)
#from help in varimp by party package
set.seed(290875)
readingSkills.cf <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 2, ntree = 50))
# standard importance
varimp(readingSkills.cf)
# the same modulo random variation
varimp(readingSkills.cf, pre1.0_0 = TRUE)
# conditional importance, may take a while...
varimp(readingSkills.cf, conditional = TRUE)
# }
# NOT RUN {
#IMP based on CIT-RF (party package)
library(party)
ntree<-50
#readingSkills: data from party package
da<-readingSkills[,1:3]
set.seed(290875)
readingSkills.cf3 <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 3, ntree = 50))
#IPM case-wise computed with OOB with party
pupf<-ipmparty(readingSkills.cf3 ,da,ntree)
#global IPM
pua<-apply(pupf,2,mean)
pua
## -------------------------------------------------------
## Example from \code{\link[randomForestSRC]{var.select}} in \pkg{randomForestSRC}
## Multivariate mixed forests
## -------------------------------------------------------
# }
# NOT RUN {
library(randomForestSRC)
#from help in var.select by randomForestSRC package
mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~., data = mtcars.new,
importance = TRUE)
var.select(mv.obj, method = "vh.vimp", nrep = 10)
#different variables are selected if var.select is repeated
# }
# NOT RUN {
#IMP based on CIT-RF (party package)
library(randomForestSRC)
mtcars.new <- mtcars
ntree<-500
da<-mtcars.new[,3:10]
mc.cf <- cforest(carb+ mpg+ cyl ~., data = mtcars.new,
control = cforest_unbiased(mtry = 8, ntree = 500))
#IPM case-wise computing with OOB with party
pupf<-ipmparty(mc.cf ,da,ntree)
#global IPM
pua<-apply(pupf,2,mean)
pua
#disp and hp are consistently selected as more important if repeated
# }
Run the code above in your browser using DataLab