Learn R Programming

InPAS (version 1.4.4)

utr3UsageEstimation: estimation of 3'UTR usage for each region

Description

estimation of 3'UTR usage for short form and long form

Usage

utr3UsageEstimation(CPsites, coverage, genome, utr3, gp1, gp2=NULL, short_coverage_threshold = 10, long_coverage_threshold = 2, adjusted.P_val.cutoff = 0.05, dPDUI_cutoff = 0.3, PDUI_logFC_cutoff=0.59, BPPARAM=NULL)

Arguments

CPsites
outputs of CPsites
coverage
coverage for each sample, outputs of coverageFromBedGraph
genome
an object of BSgenome
utr3
output of utr3Annotation
gp1
tag names involved in group 1
gp2
tag names involved in group 2
short_coverage_threshold
cutoff threshold for coverage in thre region of short form
long_coverage_threshold
cutoff threshold for coverage in thre region of long form
adjusted.P_val.cutoff
cutoff value for adjusted p.value
dPDUI_cutoff
cutoff value for differenctial PAS(polyadenylation signal) usage index
PDUI_logFC_cutoff
cutoff value for log2 fold change of PAS(polyadenylation signal) usage index
BPPARAM
An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to bplapply.

Value

return an object of GRanges

Examples

Run this code
    if(interactive()){
        library(BSgenome.Mmusculus.UCSC.mm10)
        path <- file.path(find.package("InPAS"), "extdata")
        bedgraphs <- file.path(path, "Baf3.extract.bedgraph")
        data(utr3.mm10)
        tags <- "Baf3"
        genome <- BSgenome.Mmusculus.UCSC.mm10
        coverage <- 
            coverageFromBedGraph(bedgraphs, tags, genome, hugeData=FALSE)
        CP <- CPsites(coverage=coverage, gp1=tags, gp2=NULL, genome=genome, 
            utr3=utr3.mm10, coverage_threshold=5, long_coverage_threshold=5)
        res <- utr3UsageEstimation(CP, coverage, 
            utr3.mm10, genome, gp1=tags, gp2=NULL)
    }

Run the code above in your browser using DataLab