Learn R Programming

Indicator Package

The Indicator package is a versatile tool designed for constructing composite indicators, imputing missing data, evaluating imputation results, and normalizing data. It offers a range of functions to streamline the process of handling complex datasets, making it an essential resource for researchers, analysts, and data scientists.

Key Features

  • Composite Indicator Construction: Implement various composite indicators such as the Mazziotta-Pareto Index, Adjusted Mazziotta-Pareto Index, Geometric aggregation, Linear aggregation, and more.
  • Missing Data Imputation: Utilize techniques like Linear Regression Imputation, Hot Deck Imputation, etc., to fill in missing values effectively.
  • Evaluation Metrics: Assess the quality of missing data imputation using metrics like R^2, RMSE, and MAE for informed decision-making.
  • Data Normalization: Standardize and normalize data using methods like Standardization by Adjusted Mazziotta-Pareto method, Normalization by Adjusted Mazziotta-Pareto method, and others.

Installation

You can install the Indicator package from CRAN using: https://CRAN.R-project.org/package=Indicator

install.packages(“devtools”)

devtools::install_github(“GianmarcoBorrata/Indicator”)

References

  • OECD/European Union/EC-JRC (2008), “Handbook on Constructing Composite Indicators: Methodology and User Guide”, OECD Publishing, Paris, DOI:10.1787/533411815016
  • Matteo Mazziotta & Adriano Pareto (2018), “Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices”, Social Indicators Research, Springer, vol. 136(3), pages 967-976, April, DOI:10.1007/s11205-017-1577-5
  • De Muro P., Mazziotta M., Pareto A. (2011), “Composite Indices of Development and Poverty: An Application to MDGs”, Social Indicators Research, Volume 104, Number 1, pp. 1-18, DOI:10.1007/s11205-010-9727-z

Copy Link

Version

Install

install.packages('Indicator')

Monthly Downloads

145

Version

0.1.3

License

Unlimited

Issues

Pull Requests

Stars

Forks

Maintainer

Gianmarco Borrata

Last Published

November 27th, 2024

Functions in Indicator (0.1.3)

standardization

Standardization
rank_normalisation

Rank normalization
lm_imputation

Function to apply nan inputation with linear regression
standardization_MPI

Standardization of data with Maziotta-Pareto index
compute_CI

Calculation of Condition Indices
Indicator-package

Indicator: A package for constructing composite indicators, imputing and evaluating missing data imputation
get_all_performance_boot

Function to evaluate different nan imputation methods with bootstrap
Jevons_aggregation

Jevons static aggregation
Education

Education
linear_aggregation_MPI

Mazziotta-Pareto index
get_all_performance

Function to evaluate different nan imputation methods
performance_nan_imputation

Function to evaluate nan imputation method's performance
geometric_aggregation

Geometric Aggregation
min_max

Min-max normalization
min_max_GM

Normalization for the Geometric Mean
Standardization_AMPI

Standardization of data with Adjusted Maziotta-Pareto index
columns_with_nan

Function to get the names of the columns with NAN values
linear_aggregation

Linear Aggregation
rank_aggregation

Ranking Aggregation
linear_aggregation_AMPI

Adjusted Mazziotta-Pareto index
normalization_abov_below_mean

Normalization above or below the mean
MAD

Mean absolute difference of rank
pca_weighting

Function that weight the quantitative variable by PCA method