lm_imputation: Function to apply nan inputation with linear regression
Description
The lm_imputation function aims to replace missing values (NA) in a dataset
with values estimated using a linear regression model. This technique allows
the existing relationships between variables in the dataset to be used to
accurately estimate missing values
Usage
lm_imputation(data, to_impute, regressors)
Value
It returns a dataframe with imputed values
Arguments
data
dataframe with rows = observations and columns = quantitative
variables
to_impute
string , name of the variables whre there are NANs to
impute
regressors
vector of string with names of the variables to use to
apply linear regression imputation
References
OECD/European Union/EC-JRC (2008), Handbook on Constructing
Composite Indicators: Methodology and User Guide, OECD Publishing, Paris,
<https://doi.org/10.1787/9789264043466-en>