Learn R Programming

JunctionSeq (version 1.2.4)

writeBedTrack: Write splice junction browser tracks

Description

This function saves the JunctionSeq results in the form of a set of "bed" files designed for use with the UCSC genome browser.

Usage

writeExprBedTrack(file, jscs, trackLine, only.with.sig.gene = FALSE, only.sig = FALSE, only.testable = TRUE, plot.exons = TRUE, plot.junctions = TRUE, plot.novel.junctions = TRUE, group.RGB, use.score = FALSE, FDR.threshold = 0.05, count.digits = 1, includeGeneID = FALSE, includeLocusID = TRUE, includeGroupID = TRUE, output.format = c("BED", "GTF", "GFF3"), use.gzip = TRUE, verbose = TRUE)
writeSigBedTrack(file, jscs, trackLine, only.sig = TRUE, only.testable = TRUE, plot.exons = TRUE, plot.junctions = TRUE, plot.novel.junctions = TRUE, sig.RGB = "255,0,0", nonsig.RGB = "0,0,0", use.score = TRUE, FDR.threshold = 0.05, pval.digits = 4, includeGeneID = FALSE, includeLocusID = TRUE, output.format = c("BED", "GTF", "GFF3"), use.gzip = TRUE, verbose = TRUE)

Arguments

file
Character string. File path for the output bed file.
jscs
A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses. Alternatively, this can be created manually by readJunctionSeqCounts. However in this case a number of additional steps will be necessary: Dispersions and size factors must then be set, usually using functions estimateSizeFactors and estimateJunctionSeqDispersions. Hypothesis tests must be performed by testForDiffUsage. Effect sizes and parameter estimates must be created via estimateEffectSizes.
trackLine
The "track line" of the bed file. In other words, the first line of the file. By default JunctionSeq will attempt to automatically generate a reasonable track line.
only.with.sig.gene
Logical. If TRUE, only genes containing statistically significant results will be included.
only.sig
Logical. If TRUE, only statistically significant loci will be included.
only.testable
Logical. If TRUE, only loci with sufficiently high expression to be tested will be included.
plot.exons
Logical. If TRUE, exons will be plotted.
plot.junctions
Logical. If TRUE, splice junctions will be plotted.
plot.novel.junctions
Logical. If TRUE, novel splice junctions will be plotted (if plot.junctions is also TRUE).
sig.RGB
Character string. The RGB color for significant genes. Must be in the format "r,g,b", with each value ranging from 0 to 255.
nonsig.RGB
Character string. The RGB color for non-significant loci. Must be in the format "r,g,b", with each value ranging from 0 to 255.
group.RGB
Character string. The RGB color used for each experimental group. Must be in the format "r,g,b", with each value ranging from 0 to 255. Must have a length equal to the number of experimental condition values.
use.score
Logical. If TRUE, score each locus based on the p-value.
FDR.threshold
Numeric. The FDR-adjusted p-value threshold to use to assign statistical significance.
count.digits
Numeric. The number of digits after the decimal point to include for the mean normalized counts.
pval.digits
Numeric. The number of digits after the decimal point to include for the p-values.
includeGeneID
Logical. If TRUE, include the ID of the gene in the "name" field of each line.
includeLocusID
Logical. If TRUE, include the ID of the locus in the "name" field of each line.
includeGroupID
Logical. If TRUE, include the ID of the group in the "name" field of each line.
output.format
Character string. The format to use.
use.gzip
Logical. Whether or not to gzip the bed file.
verbose
Logical. if TRUE, output debugging/progress information.

Value

This is a side-effecting function, and does not return a value.

Examples

Run this code
data(exampleDataSet,package="JctSeqData");
writeExprBedTrack("test.exonCoverage.bed.gz", jscs, 
                  plot.exons = TRUE, plot.junctions = FALSE)

## Not run: 
# ########################################
# #Set up example data:
# decoder.file <- system.file(
#                   "extdata/annoFiles/decoder.bySample.txt",
#                   package="JctSeqData");
# decoder <- read.table(decoder.file,
#                   header=TRUE,
#                   stringsAsFactors=FALSE);
# gff.file <- system.file(
#             "extdata/cts/withNovel.forJunctionSeq.gff.gz",
#             package="JctSeqData");
# countFiles <- system.file(paste0("extdata/cts/",
#      decoder$sample.ID,
#      "/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
#      package="JctSeqData");
# ######################
# #Run example analysis:
# jscs <- runJunctionSeqAnalyses(sample.files = countFiles,
#            sample.names = decoder$sample.ID,
#            condition=factor(decoder$group.ID),
#            flat.gff.file = gff.file,
#            analysis.type = "junctionsAndExons"
# );
# ########################################
# 
# #Exon coverage:
# writeExprBedTrack("test.exonCoverage.bed.gz", jscs, 
#                   plot.exons = TRUE, plot.junctions = FALSE)
# #Junction coverage:
# writeExprBedTrack("test.jctCoverage.bed.gz", jscs, 
#                   plot.exons = FALSE, plot.junctions = TRUE)
# #Both Exon and Junction coverage:
# writeExprBedTrack("test.featureCoverage.bed.gz", jscs)
# 
# #p-values of significant features:
# writeSigBedTrack("test.pvals.bed.gz", jscs)
# 
# ## End(Not run)

Run the code above in your browser using DataLab