ldexpdose(a, b, c, lb, ub, user.points = NULL, user.weights = NULL,
..., n.restarts = 1, n.sim = 1, tol = 1e-8, prec = 53, rseed = NULL)user.points must be within the design interval.user.points elements. The sum of weights should be $1$; otherwise they will be normalized.
curve.
user.design and user.weights are not NULL. NaN, an increase in prec can be beneficial to achieve a numeric value, however, it can slow down the calculation speed. Values of n.restarts and n.sim should be chosen according to the length of design interval.
Dette, H., Kiss, C., Bevanda, M. and Bretz, F. (2010), Optimal designs for the emax, log-linear and exponential models. Biometrika, 97 513-518.
Kiefer, J. C. (1974), General equivalence theory for optimum designs (approximate theory). Ann. Statist., 2, 849-879.
cfisher, cfderiv and eff.
ldexpdose(a = 1, b = 2, c = 3, lb = 0, ub = 9) # $points: 0.000000 6.471562 9.000000
## D-effecincy computation|:
ldexpdose(a = 1, b = 2, c = 3, lb = 0, ub = 9, user.points = c(1, 5, 4),
user.weights = rep(.33, 3)) # $user.eff: 0.07392
Run the code above in your browser using DataLab