ldiq(a, b, c, form, lb, ub, user.points = NULL, user.weights = NULL,
..., n.restarts = 1, n.sim = 1, tol = 1e-8, prec = 53, rseed = NULL)
1
or 2
. If form = 1
, then $E(y)=ax/(b+x+cx^2)$; if form = 2
, then $E(y)=x/(a+bx+cx^2)$.user.points
must be within the design interval.user.points
elements. The sum of weights should be $1$; otherwise they will be normalized.curve
.user.design
and user.weights
are not NULL
.form = 1
$$a,b,c>0, 2\sqrt(bc)>1,$$
if form = 2
$$a,c>0, |b|<\sqrt(ac),$$ for="" more="" details="" see="" dette="" and="" kiss="" (2009).="" while="" d-efficiency="" is="" NaN, an increase in prec
can be beneficial to achieve a numeric value, however, it can slow down the calculation speed.
Values of n.restarts
and n.sim
should be chosen according to the length of design interval.\sqrt(ac),$$>
cfisher
, cfderiv
and eff
.ldiq(a = 17 , b = 15, c = 9, form = 1, lb = 0, ub = 15)
# $points: 0.4141466 1.2909896 4.0242083
## D-effecincy computation
ldiq(a = 17 , b = 15, c = 9, form = 2, lb = 0, ub = 15, user.points = c(10,2,4),
user.weights = c(.33, .33, .33)) # $user.eff: 0.18099
Run the code above in your browser using DataLab