Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (3.2.5) of this package.
Take me there.
LMest (version 2.4.5)
Latent Markov Models with and without Covariates
Description
Fit certain versions of the Latent Markov model for longitudinal categorical data.
Copy Link
Link to current version
Version
Version
3.2.5
3.2.4
3.2.3
3.2.2
3.2.1
3.2.0
3.1.2
3.1.1
3.1.0
3.0.4
3.0.3
3.0.2
3.0.1
3.0.0
2.6.1
2.6.0
2.5.1
2.5.0
2.4.5
2.4.4
2.4.3
2.4.2
2.4.1
2.4
2.3
2.2
Install
install.packages('LMest')
Monthly Downloads
548
Version
2.4.5
License
GPL (>= 2)
Maintainer
Francesco Bartolucci
Last Published
April 7th, 2019
Functions in LMest (2.4.5)
Search all functions
complk_cont
Complete log-likelihood of the basic latent Markov model for continuous outcomes
bootstrap_lm_basic_cont
Parametric bootstrap for the basic LM model for continuous outcomes
draw_lm_basic_cont
Draw samples from the basic LM model for continuous outcomes
draw_lm_cov_latent
Draw samples from LM model with covariaates in the latent model
bootstrap_lm_cov_latent
Parametric bootstrap for LM models with individual covariates in the latent model
est_lm_cov_latent
Estimate LM model with covariates in the latent model
est_lm_cov_manifest
Estimate LM model with covariates in the measurement model
est_lm_cov_latent_cont
Estimate LM model for continuous outcomes with covariates in the latent model
logit1
Compute the logit function with respect to a reference category.
draw_lm_cov_latent_cont
Draw samples from LM model for continuous outcomes with covariaates in the latent model
draw_lm_mixed
Draws samples from the mixed LM model
long2matrices
From data in the long format to data in array format
est_lm_mixed
Estimate mixed LM model
lk_obs_mixed
Compute the observable log-likelihood of the mixed LM model
lk_obs_latent
Compute the observable log-likelihood of the LM model with covariates in the latent model
lk_obs_manifest
Compute the observable log-likelihood of the LM model with covariates in the measurement model
est_lm_basic
Estimate basic LM model
prob_post_cov
Compute posterior probabilities.
est_lm_basic_cont
Estimate basic LM model for continuous outcomes
lk_sta
Compute the stationary log-likelihood
prob_post_cov_cont
Compute posterior probabilities.
est_mc_basic
Estimate basic Markov chain (MC) model
print.LMbasic
Print the output of LMbasic object
print.LMsearch
Print the output of LMsearch object
summary.LMlatentcont
Print the output of LMlatentcont object
summary.LMmanifest
Print the output of LMmanifest object
print.MCbasic
Print the output of MCbasic object
rec3
Recursions used by est_lm_cov_manifest
recursions
Recursions used by est_lm_basic
summary.MCbasic
Print the output of MCbasic object
summary.MClatent
Print the output of MClatent object
est_mc_cov
Estimate Markov chain (MC) model with covariates
blkdiag
Build a block diagonal matrix.
print.LMbasiccont
Print the output of LMbasiccont object
print.LMmanifest
Print the output of LMmanifest object
prod_array
Compute the product of array and vector
rec1
Recursions used by est_lm_cov_manifest
bootstrap_lm_basic
Parametric bootstrap for the basic LM model
summary.LMmixed
Print the output of LMmixed object
data_criminal_sim
Criminal dataset
print.LMmixed
Print the output of LMmixed object
summary.LMsearch
Print the output of LMsearch object
data_drug
Dataset about marijuana consumption
search.model.LM
Search for the global maximum of the log-likelihood
LMest-package
Fit latent Markov models
RLMSdat
Dataset about job satisfaction
sq
Create a matrix with the combination of vectors of (1,0)
expit1
Compute the expit function with respect to a reference category.
invglob
Invert vector of global logits.
lk_ar_rho
Compute complete log-likelihood for AR(1) latent process
lk_comp_latent
Complete log-likelihood of the latent Markov model with covariates
long2wide
From data in the long format to data in the wide format
decoding
Perform local and global decoding
marg_param
Compute marginal parametrization
print.MClatent
Print the output of MClatent object
draw_lm_basic
Draw samples from the basic LM model
prob_multilogit
Compute multinomial probabilities
summary.LMbasiccont
Print the output of LMbasiccont object
est_multilogit
Estimate multilogit model
expit
Compute the expit function.
summary.LMlatent
Print the output of LMlatent object
lk_comp_latent_cont
Complete log-likelihood of the latent Markov model for continuous outcomes with covariates
lk_obs
Compute the observable log-likelihood of the basic LM model
print.LMlatent
Print the output of LMlatent object
print.LMlatentcont
Print the output of LMlatentcont object
stationary
Stationary
summary.LMbasic
Print the output of LMbasic object
trans_par
Convert matrix parametrization
bootstrap_lm_cov_latent_cont
Parametric bootstrap for LM models for continuous outcomes with individual covariates in the latent model
data_SRHS_long
Self-reported health status dataset
complk
Complete log-likelihood of the basic latent Markov model