# NOT RUN {
# }
# NOT RUN {
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS = data_SRHS_long
TT = 8
head(dataSRHS)
res = long2matrices(dataSRHS$id,X=cbind(dataSRHS$gender-1,
dataSRHS$race==2|dataSRHS$race==3, dataSRHS$education==4,
dataSRHS$education==5,dataSRHS$age-50,(dataSRHS$age-50)^2/100),
Y=dataSRHS$srhs)
# matrix of responses (with ordered categories from 0 to 4)
S = 5-res$YY
n = dim(S)[1]
# matrix of covariates (for the first and the following occasions)
# colums are: gender,race,educational level (2 columns),age,age^2)
X1 =res$XX[,1,]
X2 =res$XX[,2:TT,]
# estimate the model
est2f = est_lm_cov_latent(S,X1,X2,k=2,output=TRUE,out_se=TRUE)
summary(est2f)
# average transition probability matrix
PI = round(apply(est2f$PI[,,,2:TT],c(1,2),mean),4)
# Transition probability matrix for white females with high educational level
ind1 = (X1[,1]==1 & X1[,2]==0 & X1[,4]==1)
PI1 = round(apply(est2f$PI[,,ind1,2:TT],c(1,2),mean),4)
# Transition probability matrix for non-white male, low educational level
ind2 = (X1[,1]==0 & X1[,2]==1& X1[,3]==0 & X1[,4]==0)
PI2 = round(apply(est2f$PI[,,ind2,2:TT],c(1,2),mean),4)
# }
Run the code above in your browser using DataLab