Learn R Programming

⚠️There's a newer version (3.11.9) of this package.Take me there.

MARSS (version 3.2)

Multivariate Autoregressive State-Space Modeling

Description

The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariate autoregressive state-space (MARSS) models fit to multivariate time-series data. Fitting is primarily via an Expectation-Maximization (EM) algorithm, although fitting via the BFGS algorithm (using the optim function) is also provided. MARSS models are a class of dynamic linear model (DLM) and vector autoregressive model (VAR) model. Functions are provided for parametric and innovations bootstrapping, Kalman filtering and smoothing, bootstrap model selection criteria (AICb), confidences intervals via the Hessian approximation and via bootstrapping and calculation of auxiliary residuals for detecting outliers and shocks. The user guide shows examples of using MARSS for parameter estimation for a variety of applications, model selection, dynamic factor analysis, outlier and shock detection, and addition of covariates. Type RShowDoc("UserGuide", package="MARSS") at the R command line to open the MARSS user guide. Online workshops (lecture material) at http://faculty.washington.edu/eeholmes/workshops.shtml

Copy Link

Version

Install

install.packages('MARSS')

Monthly Downloads

750

Version

3.2

License

GPL-2

Maintainer

Elizabeth Holmes NOAA Federal

Last Published

August 30th, 2012

Functions in MARSS (3.2)

MARSSapplynames

Names for marssMLE Object Components
marssMLE

Maximum Likelihood MARSS Estimation Object
MARSSkf

Kalman Filtering and Smoothing
MARSS

Interface MARSS Model Specification and Estimation
graywhales

Population Data Sets
MARSSinits

Initial Values for MLE
MARSSmcinit

Monte Carlo Initialization
MARSSinfo

Information for MARSS Error Messages and Warnings
MARSSparamCIs

Confidence Intervals for MARSS Parameters
MARSShatyt

Compute Expected Value of Y,YY, and YX
MARSSsimulate

Simulate Data from a MARSS Model and Parameter Estimates
plankton

Plankton Data Sets
MARSS-package

Multivariate Autoregressive State-Space Model Estimation
loggerhead

Loggerhead Turtle Tracking Data
CSEGriskfigure

Plot Extinction Risk Metrics
marssm-class

Class "marssm"
checkModelList

Check model list passed into MARSS call
MARSSaic

AIC for MARSS models
MARSSvectorizeparam

Vector to Parameter Matrix Conversion
MARSSboot

Bootstrap MARSS Parameter Estimates
is.blockdiag

Matrix Utilities
MARSShessian

MARSS Parameter Variance-Covariance Matrix from the Hessian Matrix
MARSSresids

MARSS standardized residuals
is.marssm

Model Objects
marssMLE-class

Class "marssMLE"
checkMARSSInputs

Check inputs to MARSS call
harborSeal

Harbor Seal Population Count Data (Log counts)
MARSSkem

Maximum Likelihood Estimation for Multivariate Autoregressive State-Space Models
allowed

MARSS function defaults and allowed methods
parmat

Retrieve Parameter Matrix
CSEGtmufigure

Plot Forecast Uncertainty
MARSSkemcheck

Model Checking for MLE objects passed to MARSSkem
MARSS.marxss

Multivariate AR-1 State-space Model with Inputs
MARSSoptim

Parameter estimation for MARSS models using optim
stdInnov

Standardized Innovations
MARSSinnovationsboot

Bootstrapped Data using Stoffer and Wall's Algorithm