MARSS-package.MARSSaic(MLEobj, output = c("AIC", "AICc"),
Options = list(nboot = 1000, return.logL.star = FALSE,
silent = FALSE))marssMLE. This object must have a $par element containing MLE parameter estimates from e.g. MARSSkem().nbootNumber of bootstraps (positive integer)return.logL.starReturn the log-likelihoods for each bootstrap? (T/F)silentSuppress printing of the progress bar during AICmarssMLE object that was passed in with additional AIC components added on top as specified in the 'output' argument.output includes both "AICbp" and "boot.params", the bootstrapped parameters from "AICbp" will be added to MLEobj.RShowDoc("UserGuide",package="MARSS") to open a copy.
Bengtsson, T., and J. E. Cavanaugh. 2006. An improved Akaike information criterion for state-space model selection. Computational Statistics & Data Analysis 50:2635-2654.
Cavanaugh, J. E., and R. H. Shumway. 1997. A bootstrap variant of AIC for state-space model selection. Statistica Sinica 7:473-496.MARSSbootdat = t(harborSealWA)
dat = dat[2:3,]
kem = MARSS(dat, model=list(Z=factor(c(1,1)),
R="diagonal and equal"))
kemAIC = MARSSaic(kem, output=c("AIC","AICc"))Run the code above in your browser using DataLab