MARSS-package
.MARSSaic(MLEobj, output = c("AIC", "AICc"),
Options = list(nboot = 1000, return.logL.star = FALSE,
silent = FALSE))
marssMLE
. This object must have a $par
element containing MLE parameter estimates from e.g. MARSSkem()
.nboot
Number of bootstraps (positive integer)return.logL.star
Return the log-likelihoods for each bootstrap? (T/F)silent
Suppress printing of the progress bar during AICmarssMLE
object that was passed in with additional AIC components added on top as specified in the 'output' argument.output
includes both "AICbp"
and "boot.params"
, the bootstrapped parameters from "AICbp"
will be added to MLEobj
.RShowDoc("UserGuide",package="MARSS")
to open a copy.
Bengtsson, T., and J. E. Cavanaugh. 2006. An improved Akaike information criterion for state-space model selection. Computational Statistics & Data Analysis 50:2635-2654.
Cavanaugh, J. E., and R. H. Shumway. 1997. A bootstrap variant of AIC for state-space model selection. Statistica Sinica 7:473-496.MARSSboot
dat = t(harborSealWA)
dat = dat[2:3,]
kem = MARSS(dat, model=list(Z=factor(c(1,1)),
R="diagonal and equal"))
kemAIC = MARSSaic(kem, output=c("AIC","AICc"))
Run the code above in your browser using DataLab