print.marssMLE
and look for "states.cis".MARSSparamCIs(MLEobj, method = "hessian", alpha = 0.05, nboot=1000)
marssMLE
. Must have a $par
element containing the MLE parameter estimates.MARSSparamCIs
returns the marssMLE
object passed in, with additional components par.se
, par.upCI
, par.lowCI
, par.CI.alpha
, par.CI.method
, par.CI.nboot
and par.bias
(if method is "parametric" or "innovations").nboot
bootstraps. The Hessian CIs are based on the asymptotic normality of MLE parameters under a large-sample approximation. The Hessian computation for variance-covariance matrices is done on these matrices in their equivalent Cholesky decomposition form (see MARSShessian
. Bootstrap estimates of parameter bias are reported if method "parametric" or "innovations" is specified.
Note, these are added to the par (etc) elements of a marssMLE object but are in marss form not marxss form. Thus the MLEobj$par.upCI and related elements that are added to the marssMLE object may not look familiar to the user. Instead the user should extract these elements using print(MLEobj)
and passing in the argument what
set to "par.se","par.bias","par.lowCIs", or "par.upCIs". See print.marssMLE
.RShowDoc("UserGuide",package="MARSS")
to open a copy.MARSSboot
MARSSinnovationsboot
MARSShessian
dat = t(harborSealWA)
dat = dat[2:4,]
kem = MARSS(dat, model=list(Z=matrix(1,3,1),
R="diagonal and unequal"))
kem.with.CIs.from.hessian = MARSSparamCIs(kem)
kem.with.CIs.from.hessian
Run the code above in your browser using DataLab