## Not run:
# # Suppose the model of interest is Model 2 in the simulation study
# # in Lai and Kelley (2010), and the goal is to obtain a 95% confidence
# # interval for 'beta21' no wider than 0.3. The necessary sample size
# # can be calculated as follows.
#
# library(sem)
#
# # specify a model object in the RAM notation
# model.2<-specifyModel()
# xi1 -> y1, lambda1, 1
# xi1 -> y2, NA, 1
# xi1 -> y3, lambda2, 1
# xi1 -> y4, lambda3, 0.3
# eta1 -> y4, lambda4, 1
# eta1 -> y5, NA, 1
# eta1 -> y6, lambda5, 1
# eta1 -> y7, lambda6, 0.3
# eta2 -> y6, lambda7, 0.3
# eta2 -> y7, lambda8, 1
# eta2 -> y8, NA, 1
# eta2 -> y9, lambda9, 1
# xi1 -> eta1, gamma11, 0.6
# eta1 -> eta2, beta21, 0.6
# xi1 <-> xi1, phi11, 0.49
# eta1 <-> eta1, psi11, 0.3136
# eta2 <-> eta2, psi22, 0.3136
# y1 <-> y1, delta1, 0.51
# y2 <-> y2, delta2, 0.51
# y3 <-> y3, delta3, 0.51
# y4 <-> y4, delta4, 0.2895
# y5 <-> y5, delta5, 0.51
# y6 <-> y6, delta6, 0.2895
# y7 <-> y7, delta7, 0.2895
# y8 <-> y8, delta8, 0.51
# y9 <-> y9, delta9, 0.51
#
#
# # to inspect the specified model
# model.2
#
# # one way to specify the population covariance matrix is to first
# # specify path coefficients and then calcualte the model-implied
# # covariance matrix
# theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
# 0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)
#
# names(theta) <- c("lambda1","lambda2","lambda3",
# "lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
# "gamma11", "beta21",
# "phi11", "psi11", "psi22",
# "delta1","delta2","delta3","delta4","delta5","delta6","delta7",
# "delta8","delta9")
#
# res<-theta.2.Sigma.theta(model=model.2, theta=theta,
# latent.vars=c("xi1", "eta1","eta2"))
#
# Sigma.theta <- res$Sigma.theta
# # thus 'Sigma.theta' is the input covariance matrix for sample size
# # planning procedure.
#
# # the necessary sample size can be calculated as follows.
# # ss.aipe.sem.path(model=model.2, Sigma=Sigma.theta,
# # desired.width=0.3, which.path="beta21")
# ## End(Not run)
Run the code above in your browser using DataLab