Learn R Programming

MBttest (version 1.0.0)

betaparametVP: Estimation of Binomal Parameters V And P in Count Data of RNA Reads

Description

This function is used to estimate parameters P and V by optimalizing estimation of parameters: alpha and beta.

Usage

betaparametVP(X, NX)

Arguments

X
count dataset derived from m replicate libraries in one condition.
NX
vector of m library sizes. Library size is sum of counts over the whole library.

Value

return a list:
P
N proportions estimated.
V
N variances estimated.

Details

Count data of RNA reads are assumed to follow binomial distribution with parameters (P) and (V), while P is assumed to follow beta distribution with parameters alpha (a) and beta(b). Parameters P and V are estimated by optimal estimation of parameters a and b. The optimal method is an iteration method drived by weighting proportion of gene or isoform in each replicate library. This is a large-scale method for estimating these parameters. Estimation of parameters P and V is core of the multiple beta t-test method because P and V will be used to calculate t-value.

References

Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics, 19: 1477-1483. \ Yuan-De Tan, Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis.Plos One,10.1371/journal.pone.0123658.

See Also

betaparametab, betaparametw

Examples

Run this code
data(jkttcell) 
X<-jkttcell[1:500,]
na<-3
nb<-3
cn<-length(X[1,])
rn<-length(X[,1])
XC<-X[,1:(cn-na-nb)]
XX<-X[,(cn-na-nb+1):cn]
n<-na+nb
XA<-XX[,1:na]
SA<-apply(XA,2,sum)
PA<-betaparametVP(XA,SA)

Run the code above in your browser using DataLab