'mdr'
, performs a permutation test to assess the statistical significance of the balanced accuracy evaluation measure of the 'best model'.
permute.mdr(accuracy, loci, N.permute, method = c("CV", "3WS", "none"), data, cv, K, x = NULL, proportion = NULL, ratio = NULL, equal = "HR", genotype = c(0, 1, 2), LRT=FALSE)
mdr.cv
, mdr.3WS
, or mdr
) mdr.cv
or mdr.3WS
, or prespecified set of loci fit with mdr
mdr.cv
, "3WS" for mdr.3WS
, "none" for mdr
data
; if NULL, default is c(0,1,2) accuracy
N.permute
permutationsN.permute
permutationsHahn LW, Ritchie MD, Moore JH (2003). Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19(3):376-82.
Velez DR et al (2007). A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 31(4): 306-315.
Motsinger-Reif AA (2008). The effect of alternative permutation testing strategies on the performance of multifactor dimensionality reduction. BMC Research Notes 1:139.
Edwards TL et al (2010). A General Framework for Formal Tests of Interaction after Exhaustive Search Methods with Applications to MDR and MDR-PDT. PLoS One 5(2).
mdr.cv
, mdr.3WS
, mdr
#load data
data(mdr1)
#fit an mdr object to a subset of the sample data
fit<-mdr.3WS(data=mdr1[,1:11],K=2)
####save the accuracy
acc<-fit$'final model accuracy'
###save the final model loci
loc<-fit$'final model'
####run permutation test on 10 permutations
perm<-permute.mdr(accuracy=acc, loci=loc, N.permute=10, method="3WS",data=mdr1[,1:11], K=2, LRT=TRUE)
###empirical p-value
perm$'Permutation P-value'
Run the code above in your browser using DataLab