Learn R Programming

⚠️There's a newer version (1.4.1) of this package.Take me there.

MoTBFs (version 1.2)

Learning Hybrid Bayesian Networks using Mixtures of Truncated Basis Functions

Description

Learning, manipulation and evaluation of mixtures of truncated basis functions (MoTBFs), which include mixtures of polynomials (MOPs) and mixtures of truncated exponentials (MTEs). MoTBFs are a flexible framework for modelling hybrid Bayesian networks (I. Prez-Bernab, A. Salmern, H. Langseth (2015) ; H. Langseth, T.D. Nielsen, I. Prez-Bernab, A. Salmern (2014) ; I. Prez-Bernab, A. Fernndez, R. Rum, A. Salmern (2016) ). The package provides functionality for learning univariate, multivariate and conditional densities, with the possibility of incorporating prior knowledge. Structural learning of hybrid Bayesian networks is also provided. A set of useful tools is provided, including plotting, printing and likelihood evaluation. This package makes use of S3 objects, with two new classes called 'motbf' and 'jointmotbf'.

Copy Link

Version

Install

install.packages('MoTBFs')

Monthly Downloads

194

Version

1.2

License

LGPL-3

Maintainer

Ana D. Maldonado

Last Published

January 14th, 2020

Functions in MoTBFs (1.2)

coef.jointmotbf

Extract Coefficients of a "jointmotbf" Object
findConditional

Find Fitted Conditional MoTBFs
integralMTE

Integral MTE
Subclass-MoTBF

Subclass "motbf" Functions
conditionalmotbf.learning

Learning Conditional Functions
derivMoTBF

Derivative MoTBF
forward_sampling

Forward Sampling
coefExpJointCDF

Degree Function
derivMTE

Derivative MTE
as.function.motbf

Coerce an "motbf" Object to a Function
coef.mop

Extract MOP Coefficients
asMTEString

Parameters to MTE String
coef.motbf

Extract MoTBF Coefficients
evalJointFunction

Evaluate a Joint Function
clean

Remove Objects from Memory
derivMOP

Derivative MOP
integralJointMoTBF

Integral Joint MoTBF
is.root

Root nodes
asMOPString

Parameters to MOP String
ecoli

Data set Ecoli: Protein Localization Sites
coef.mte

Extract MTE Coefficients
integralMoTBF

Integral MoTBF
goodnessDiscreteVariables

Goodness of discrete probabilities
printBN

Prints BN Results
integralMOP

Integral MOP
jointCDF

Cumulative Joint Distribution
dataMining

Functions to Manipulate a Dataset
preprocessedData

Remove Missing Values in a Dataset by Rows
dimensionFunction

Dimension of Functions
sample_MoTBFs

Generate Samples From Conditional MoTBFs
jointmotbf.learning

Learning Joint Functions
subsetData

Subset a Dataset
nVariables

Number of Variables in a Joint Function
getCoefficients

Get the Coefficients
newRangePriorData

Redefining the Domain
is.discrete

Check discreteness of a node
discreteStatesFromBN

Get the states of all discrete nodes from a MoTFB-BN
is.observed

Observed Node
getNonNormalisedRandomMoTBF

Ramdom MoTBF
rescaledFunctions

Rescales an MoTBF Function
rnormMultiv

Multivariate Normal Sample
generateNormalPriorData

Prior Data
learnMoTBFpriorInformation

Incorporating Prior Knowledge
plotConditional

Plots for Conditional Functions
probDiscreteVariable

Probabilities Discrete Variables
plot.motbf

Plots for 'motbf' Objects
r.data.frame

Initialize Data Frame
marginalJointMoTBF

Marginal Joint MoTBF
getChildParentsFromGraph

Get Relationships in a Network
mop.learning

Fitting Polynomial Models
printConditional

Prints Conditional Functions
printDiscreteBN

Prints Discrete Learnings
summary.jointmotbf

Summary of a "jointmotbf" Object
summary.motbf

Summary of an "motbf" Object
motbf_type

Type of MoTBF
mte.learning

Fitting Exponential Models
goodnessMoTBFBN

BIC of an MoTBF BN
plot.jointmotbf

Bidimensional Plots for 'jointmotbf' Objects
thyroid

Data set Thyroid Disease (thyroid0387)
parentValues

Value of Parent Nodes
univMoTBF

Fitting MoTBFs
MoTBF-Distribution

Random Generation for MoTBFs
LearningHC

Learning Hybric Bayesian Networks
MoTBFs_Learning

Learning MoTBFs in a Network
BICMultiFunctions

BIC for Multiple Functions
Class-JointMoTBF

Class "jointmotbf"
Class-MoTBF

Class "motbf"
BICMoTBF

Computing the BIC Score of an MoTBF Function
UpperBoundLogLikelihood

Upper Bound Loglikelihood
as.function.jointmotbf

Coerce a "jointmotbf" Object to a Function