Learn R Programming

MultiRNG (version 1.2.4)

Multivariate Pseudo-Random Number Generation

Description

Pseudo-random number generation for 11 multivariate distributions: Normal, t, Uniform, Bernoulli, Hypergeometric, Beta (Dirichlet), Multinomial, Dirichlet-Multinomial, Laplace, Wishart, and Inverted Wishart. The details of the method are explained in Demirtas (2004) .

Copy Link

Version

Install

install.packages('MultiRNG')

Monthly Downloads

507

Version

1.2.4

License

GPL-2 | GPL-3

Maintainer

Ran Gao

Last Published

March 5th, 2021

Functions in MultiRNG (1.2.4)

generate.point.in.sphere

Point Generation for a Sphere
draw.multivariate.laplace

Pseudo-Random Number Generation under Multivariate Laplace Distribution
loc.min

Minimum Location Finder
draw.d.variate.t

Pseudo-Random Number Generation under Multivariate t Distribution
draw.d.variate.normal

Pseudo-Random Number Generation under Multivariate Normal Distribution
draw.wishart

Pseudo-Random Number Generation under Wishart Distribution
draw.multinomial

Pseudo-Random Number Generation under Multivariate Multinomial Distribution
draw.inv.wishart

Pseudo-Random Number Generation under Inverted Wishart Distribution
MultiRNG-package

Multivariate Pseudo-Random Number Generation
draw.multivariate.hypergeometric

Pseudo-Random Number Generation under Multivariate Hypergeometric Distribution
draw.dirichlet.multinomial

Pseudo-Random Number Generation under Dirichlet-Multinomial Distribution
draw.d.variate.uniform

Pseudo-Random Number Generation under Multivariate Uniform Distribution
draw.correlated.binary

Generation of Correlated Binary Data
draw.dirichlet

Pseudo-Random Number Generation under Multivariate Beta (Dirichlet) Distribution