This function implements pseudo-random number generation for a multivariate beta (Dirichlet) distribution with pdf
$$f(x|\alpha_{1},...,\alpha_{d})=\frac{\Gamma(\sum_{j=1}^{d}\alpha_{j})}{\prod_{j=1}^{d}\Gamma(\alpha_{j})} \prod_{j=1}^{d}x_{j}^{\alpha_{j}-1}$$
for \(\alpha_{j}>0\), \(x_{j}\geq 0\), and \(\sum_{j=1}^{d}x_{j}=1\), where \(\alpha_{1},...,\alpha_{d}\) are the shape parameters and \(\beta\) is a common scale paramter.