# NOT RUN {
set.seed(123)
x <- rnorm(100) ; y <- rnorm(100)
NNS.reg(x, y)
## Manual {order} selection
NNS.reg(x, y, order = 2)
## Maximum {order} selection
NNS.reg(x, y, order = "max")
## x-only paritioning (Univariate only)
NNS.reg(x, y, type = "XONLY")
## For Multiple Regression:
x <- cbind(rnorm(100), rnorm(100), rnorm(100)) ; y <- rnorm(100)
NNS.reg(x, y, point.est = c(.25, .5, .75))
## For Multiple Regression based on Synthetic X* (Dimension Reduction):
x <- cbind(rnorm(100), rnorm(100), rnorm(100)) ; y <- rnorm(100)
NNS.reg(x, y, point.est = c(.25, .5, .75), dim.red.method = "cor")
## IRIS dataset examples:
# Dimension Reduction:
NNS.reg(iris[,1:4], iris[,5], dim.red.method = "cor", order = 5)
# Dimension Reduction using causal weights:
NNS.reg(iris[,1:4], iris[,5], dim.red.method = "NNS.caus", order = 5)
# Multiple Regression:
NNS.reg(iris[,1:4], iris[,5], order = 2, noise.reduction = "off")
# Classification:
NNS.reg(iris[,1:4], iris[,5], point.est = iris[1:10, 1:4], type = "CLASS")$Point.est
## To call fitted values:
x <- rnorm(100) ; y <- rnorm(100)
NNS.reg(x, y)$Fitted
## To call partial derivative (univariate regression only):
NNS.reg(x, y)$derivative
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab