Plot.NanoStringNorm(x, plot.type = 'norm.factors', samples = NA, trait = NA, label.best.guess = TRUE, label.ids = NA, title = TRUE)} examples{
# load data data(NanoString);
# specifiy housekeeping genes in annotation NanoString.mRNA[NanoString.mRNA$Name %in% c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),'Code.Class'] <- 'Housekeeping';
# setup the traits sample.names <- names(NanoString.mRNA)[-c(1:3)]; strain1 <- rep(1, times = (ncol(NanoString.mRNA)-3)); strain1[grepl('HW',sample.names)] <- 2; strain2 <- rep(1, times = (ncol(NanoString.mRNA)-3)); strain2[grepl('WW',sample.names)] <- 2; strain3 <- rep(1, times = (ncol(NanoString.mRNA)-3)); strain3[grepl('LE',sample.names)] <- 2; trait.strain <- data.frame( row.names = sample.names, strain1 = strain1, strain2 = strain2, strain3 = strain3 );
# normalize NanoString.mRNA.norm <- NanoStringNorm( x = NanoString.mRNA, anno = NA, CodeCount = 'geo.mean', Background = 'mean.2sd', SampleContent = 'housekeeping.geo.mean', round.values = TRUE, log = TRUE, traits = trait.strain, return.matrix.of.endogenous.probes = FALSE );
# plot all the plots as PDF report pdf('NanoStringNorm_Example_Plots_All.pdf') Plot.NanoStringNorm( x = NanoString.mRNA.norm, label.best.guess = TRUE, plot.type = 'all'); dev.off()
# publication quality tiff volcano plot tiff('NanoStringNorm_Example_Plots_Volcano.tiff', units = 'in', height = 6, width = 6, compression = 'lzw', res = 1200, pointsize = 10); Plot.NanoStringNorm( x = NanoString.mRNA.norm, label.best.guess = TRUE, plot.type = c('volcano'), title = FALSE ); dev.off()
# all plots as seperate files output for a presentation png('NanoStringNorm_Example_Plots_%03d.png', units = 'in', height = 6, width = 6, res = 250, pointsize = 10); Plot.NanoStringNorm( x = NanoString.mRNA.norm, label.best.guess = TRUE, plot.type = c('cv','mean.sd','RNA.estimates','volcano','missing','norm.factors','positive.controls','batch.effects') ); dev.off()
# user specified labelling with optimal resolution for most digital displays png('NanoStringNorm_Example_Plots_Normalization_Factors.png', units = 'in', height = 6, width = 6, res = 250, pointsize = 10); Plot.NanoStringNorm( x = NanoString.mRNA.norm, label.best.guess = FALSE, label.ids = list(genes = rownames(NanoString.mRNA.norm$gene.summary.stats.norm), samples = rownames(NanoString.mRNA.norm$sample.summary.stats)), plot.type = c('norm.factors') ); dev.off()
# testing png('test.png', units = 'in', height = 6, width = 6, res = 250, pointsize = 10); Plot.NanoStringNorm( x = NanoString.mRNA.norm, label.best.guess = FALSE, label.ids = list(genes = rownames(NanoString.mRNA.norm$gene.summary.stats.norm), samples = rownames(NanoString.mRNA.norm$sample.summary.stats)), plot.type = c('RNA.estimates') ); dev.off()
} author{Daryl M. Waggott}
keyword{NanoString} keyword{Normalization} keyword{mRNA} keyword{miRNA}