Learn R Programming

OGSA (version 1.2.0)

copaStat: copaStat

Description

Calculates outlier statistics by the Tibshirani-Hastie method

Usage

copaStat (data, phenotype, tail='right', perms=100, permType='array')

Arguments

data
A matrix of nGene by nSample
phenotype
A vector of 0s and 1s of length nSample, where 1 = case, 0 = control
tail
Indicates whether outliers are up (right) or down (left) outliers
perms
The number of permutations
permType
By all on array or by gene, if by gene increase perms significantly and plan on lots of time; in theory array should be fine as genes are rescaled

Value

A vector with outlier counts by gene

References

Ochs, M. F., Farrar, J. E., Considine, M., Wei, Y., Meshinchi, S., & Arceci, R. J. (n.d.). Outlier Analysis and Top Scoring Pair for Integrated Data Analysis and Biomarker Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1-1. doi:10.1109/tcbb.2013.153

Examples

Run this code
data(ExampleData)

#Set up phenotype
phenotype <- pheno
names(phenotype) <- colnames(cnv)

#set up values for expr-meth-cnv in that order
tailLRL <- c('left', 'right', 'left')

#setup dataList
dataSet <- list(expr, meth, cnv)

data <- dataSet[[1]]

tibL <- copaStat(data, phenotype, tail='right', perms=100, permType='array')

Run the code above in your browser using DataLab