Learn R Programming

PLSbiplot1 (version 0.1)

SPLS.binomial.GLM: Sparse Partial Least Squares-Generalized Linear Model (SPLS-GLM) algorithm for Binomial y

Description

Takes in a set of predictor variables and a set of response variables and gives the SPLS-GLM parameters.

Usage

SPLS.binomial.GLM(X, y, A, lambdaY, lambdaX, eps = 0.001, ...)

Arguments

X
A (NxP) predictor matrix
y
A (Nx1) Binomial-distributed response vector
A
The number of PLS components
lambdaY
A value for the penalty parameters for the soft-thresholding penalization function for Y-weights
lambdaX
A value for the penalty parameters for the soft-thresholding penalization function for X-weights
eps
Cut off value for convergence step
...
Other arguments. Currently ignored

Value

The SPLS-GLM parameters of D=[X y]

Examples

Run this code
if(require(MASS))
data(Pima.tr, package="MASS")
X = as.matrix(cbind(Pima.tr[,1:7]))
dimnames(X) = list(1:nrow(X), colnames(X))
y = as.matrix(as.numeric(Pima.tr$type)-1, ncol=1)
#0=No and 1=Yes
dimnames(y) = list(1:nrow(y), paste("type"))
SPLS.binomial.GLM(scale(X), scale(y), A=2, lambdaY=0, lambdaX=0.96, eps=1e-3)
#lambdaX and lambdaY value are determined using function opt.penalty.values
#for more details, see opt.penalty.values help file

Run the code above in your browser using DataLab