## Not run:
# simOptions = RNAseq.SimOptions.2grp()
# ## run a few simulations
# simRes = runSims(Nreps=c(3,5,7), sim.opts=simOptions, nsims=5,
# DEmethod="edgeR")
#
# ## using FDR 0.1 to call DE, then look at power curves and summary
# powers = comparePower(simRes)
# summaryPower(powers)
# par(mfrow=c(2,2))
# plotPower(powers)
# plotPowerTD(powers)
# plotFDR(powers)
# plotFDcost(powers)
#
# ## filter out the genes with low counts (<10) and redo power calculation
# ## Marginal powers are significantly higher.
# powers = comparePower(simRes, filter.by="expr", strata.filtered=1)
# summaryPower(powers)
# par(mfrow=c(2,2))
# plotPower(powers)
# plotPowerTD(powers)
# plotFDR(powers)
# plotFDcost(powers)
#
# ## Provide higher threshold for log fold change to define true DE.
# ## This will result in higher power.
# powers2 = comparePower(simRes, delta=2)
# summaryPower(powers2)
# par(mfrow=c(2,2))
# plotPower(powers2)
# plotPowerTD(powers2)
# plotFDR(powers2)
# plotFDcost(powers2)
#
# ## use effect size to define biologically interesting genes
# powers3 = comparePower(simRes, filter.by="expr", strata.filtered=1,
# target.by="effectsize", delta=1)
# summaryPower(powers3)
# par(mfrow=c(2,2))
# plotPower(powers3)
# plotPowerTD(powers3)
# plotFDR(powers3)
# plotFDcost(powers3)
# ## End(Not run)
Run the code above in your browser using DataLab