popgenreport
function. It needs to be provided with a genind object with spatial coordinates, a friction map (raster) and a specification which type of genetic distance should be used.
Once all three type of input are provided with the necessary input, a landscape genetic analysis using least cost path analysis is computed (see Cushman et al. 2010, Landguth et al. 2010). Depending on the genetic distance meassurement this is done on a subpopulation basis (D, Gst.Hedrick, Gst.Nei=Fst) or on an individual basis (Kosman, Smouse).
landgenreport(cats, fric.raster, gen.distance = "Gst.Nei", NN=NULL,
pathtype="leastcost", plotpath=TRUE, theta=1, mk.resistance = TRUE ,
mapdotcolor = "blue", mapdotsize=1, mapdotalpha = 0.4, mapdottype = 19,
mapzoom = NULL,mk.custom = FALSE, fname = "LandGenReport", foldername = "results",
path.pgr = NULL, mk.Rcode = FALSE, mk.complete = FALSE, mk.pdf = TRUE)
genind
object with spatial coordinates in the other slot
gdistance
package. Available distances are 'leastcost', 'commute' or 'rSPDistance'. See functions in the gdistance package for futher explanations.rSPDistance
in package gdistance
.popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
popgenreport
how to include coordinates to a genind object. The coordinates need to be projected. Latlongs are not valid, because Euclidean distances are calcuated based on these coordinates. For an example how to convert latlongs into a projected format have a look at the vignette that comes with this package. The friction needs to be a raster and needs to be in the same projection as the genind object. Also the type of genetic distance to be used needs to be specified.
Landguth, E. L., Cushman, S. A., Schwartz, M. K., McKelvey, K. S., Murphy, M. and Luikart, G. (2010). Quantifying the lag time to detect barriers in landscape genetics. Molecular ecology, 4179-4191.
Wang,I 2013. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution: 67-12: 3403-3411.
Wasserman, T. N., Cushman, S. A., Schwartz, M. K. and Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601-1612.
popgenreport
, wassermann
,
genleastcost
, lgrMMRR
## Not run:
# lc<-landgenreport(cats=landgen, fric.raster=fric.raster, gen.distance="D", NN=4, mk.resistance=TRUE)
# names(lc$leastcost)
# ## End(Not run)
Run the code above in your browser using DataLab