Learn R Programming

ProfileGLMM (version 1.1.0)

exposure_data: Simulated Data and Parameters for a exposure profile linear mixed model

Description

A list containing a simulated exposure dataset (df) and the ground-truth parameters (theta0) used to generate it.

The dataset df contains \(N = 4500\) observations across \(n_{Ind} = 1500\) individuals, with $n_R = 3$ repeated measures per individual.

Usage

exposure_data

Arguments

Format

A list with 2 components:

df

A data frame with 4,500 rows and 6 variables (the simulated data).

theta0

A list of 11 elements containing the true parameters used for simulation.

<code>df</code> Data Variables

X

Continuous predictor (\(\sim N(0, 1)\)).

t

Time-like variable (structured around 0, 1, 2).

indiv

**Individual ID** (1 to 1500), the grouping factor.

Exp1, Exp2

Exposure continuous predictors.

Y

The **Simulated Response Variable** calculated as: \(\bold{Y} = y_{Fe} + y_{Int} + y_{Re} + \epsilon\), where \(\epsilon ~ N(0, 1)\).

<code>theta0</code> Parameters

The list theta0 holds the true values used to generate Y, including:

  • Lat: **Categorical Factor** (9 levels), defining the clusters for interaction effects.

  • beta: True fixed effects for the global intercept and \(\bold{X}\) (i.e., $(3, 2)$).

  • alphaLat: Vector of 18 coefficients defining the cluster-specific intercepts and slopes for \(\bold{X}\) within the 9 Lat categories.

  • alphaRE: Vector of 1500 random slopes for the time variable \(\bold{t}\), drawn from $N(0, 1)$.

  • sigma: Residual standard deviation (1).

Details

The underlying model for the response \(\bold{Y}\) is: $$\bold{Y} = \bold{X}_{Fe}\bold{\beta} + \bold{X}_{Int}\bold{\alpha}_{Lat} + \bold{X}_{Re}\bold{\alpha}_{RE} + \bold{\epsilon}$$