Learn R Programming

This package implements a Bayesian profile regression using a generalized linear mixed model as output model. The package allows for binary (probit mixed model) and continuous (linear mixed model) outcomes and both continuous and categorical clustering variables. The package utilizes 'RcppArmadillo' and 'RcppDist' for high-performance statistical computing in C++.

Aspirational CRAN Installation Once accepted to CRAN, you will be able to install the stable version directly using the following command:

install.packages("ProfileGLMM")

The primary function for sampling form the posterior of the parameters is profileGLMM_Gibbs()

data("exposure_data")
exp_data = exposure_data$df

covList = {}
covList$FE = c('X')
covList$RE = c('t')
covList$REunit = c('indiv')
covList$Lat = c('X')
covList$Assign$Cont = c('Exp1','Exp2')
covList$Assign$Cat = NULL
covList$Y = c('Y')
dataProfile = profileGLMM_preprocess(regtype='linear',
                                     covList = covList,
                                     dataframe = exp_data,
                                     nC = 30,
                                     intercept = list(FE = T, RE = F, Lat = T))


MCMC_Obj = profileGLMM_Gibbs(model = dataProfile,
                             nIt = 5000,
                             nBurnIn = 2000)

Copy Link

Version

Install

install.packages('ProfileGLMM')

Version

1.1.0

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Matteo Amestoy

Last Published

February 3rd, 2026

Functions in ProfileGLMM (1.1.0)

predict.pglmm_fit

Prediction of cluster memberships and outcomes
prior_init

Initialize the prior hyperparameters for the Profile GLMM
encodeCat

One-Hot Encodes Factor Variables (FIRST Level as Reference)
piecewise_data

Simulated Data and Parameters for a Piecewise Example
print.pglmm_mcmc

Print method for pglmm_mcmc
print.pglmm_data

Print method for pglmm_data
plot.pglmm_fit

Plot method for pglmm_fit continuous covariates cluster characteristics
print.pglmm_fit

Print method for pglmm_fit
profileGLMM_postProcess

Post-process MCMC Output for Profile GLMM
profileGLMM_Gibbs

R Wrapper for Profile GLMM Gibbs Sampler (C++ backend)
theta_init

Initialize the variables for the Gibbs sampler chain
profileGLMM_preprocess

Preprocess the data from a list describing the profile LMM model
summary.pglmm_fit

Print method for pglmm_fit
exposure_data

Simulated Data and Parameters for a exposure profile linear mixed model
examp

List of the different outputs of the main functions for the examples