This function establishes the prior distributions for all parameters
in the Profile GLMM. It sets up vague, non-informative priors (often using small
precision/large variance or conjugate forms like Wishart/Dirichlet) for the fixed effects (\(beta_{FE}\)),
residual variance (\(\sigma^2\)), random effects covariance (\(\Sigma_{RE}\)), latent effects covariance (\(\Sigma_{Lat}\)),
cluster parameters (means and covariances), and the Dirichlet Process parameters (\(\alpha\)).