## Not run:
# ## generate some data
# set.seed(111)
# n <- 200
#
# ## regressor
# dat <- data.frame(x = runif(n, -3, 3))
#
# ## response
# dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))
#
# ## estimate model
# b <- bayesx(y ~ sx(x), data = dat)
#
# ## extract samples for the P-spline
# sax <- samples(b, term = "sx(x)")
# colnames(sax)
#
# ## plotting
# plot(sax)
#
# ## linear effects samples
# samples(b, term = "linear-samples")
#
# ## for acf, increase lag
# sax <- samples(b, term = c("linear-samples", "var-samples", "sx(x)"),
# acf = TRUE, lag.max = 200, coda = FALSE)
# names(sax)
# head(sax)
#
#
# ## plot maximum autocorrelation
# ## of all parameters
# sax <- samples(b, term = c("linear-samples", "var-samples", "sx(x)"),
# acf = TRUE, lag.max = 50, coda = FALSE)
# names(sax)
# matplot(y = apply(sax, 1, max), type = "h",
# ylab = "ACF", xlab = "lag")
#
# ## example using multiple chains
# b <- bayesx(y ~ sx(x), data = dat, chains = 3)
# sax <- samples(b, term = "sx(x)")
# plot(sax)
# ## End(Not run)
Run the code above in your browser using DataLab