# GRstats

From R2BayesX v1.1-1
by Nikolaus Umlauf

##### Compute Gelman and Rubin's convergence diagnostics from multicore BayesX models.

This function takes a fitted `bayesx`

object estimated with multiple chains/cores and
computes the Gelman and Rubin's convergence diagnostic of the model parameters using function
`gelman.diag`

provided in package coda.

- Keywords
- regression

##### Usage

`GRstats(object, term = NULL, ...)`

##### Arguments

- object
an object of class

`"bayesx"`

, returned from the model fitting function`bayesx`

using the multiple chain or core option.- term
character or integer. The term for which the diagnostics should be computed, see also function

`samples`

.- …
arguments passed to function

`gelman.diag`

.

##### Value

An object returned from `gelman.diag`

.

##### See Also

##### Examples

```
# NOT RUN {
## generate some data
set.seed(111)
n <- 500
## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),
w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))
## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +
c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))
## estimate model
b <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,
data = dat, method = "MCMC", chains = 3)
## obtain Gelman and Rubin's convergence diagnostics
GRstats(b, term = c("sx(x)", "sx(z,w)"))
GRstats(b, term = c("linear-samples", "var-samples"))
## of all parameters
GRstats(b, term = c("sx(x)", "sx(z,w)",
"linear-samples", "var-samples"))
# }
```

*Documentation reproduced from package R2BayesX, version 1.1-1, License: GPL-2 | GPL-3*

### Community examples

Looks like there are no examples yet.