Learn R Programming

R2admb (version 0.7.10)

AIC.admb: Standard accessor functions for ADMB model fits

Description

Extract standard information such as log-likelihood, AIC, coefficients, etc. from ADMB model fits

Usage

## S3 method for class 'admb':
AIC(object, ..., k = 2)

  ## S3 method for class 'admb':
confint(object, parm, level = 0.95,
    method = "default", type = "fixed", ...)

  ## S3 method for class 'admb':
print(x, verbose = FALSE, ...)

  ## S3 method for class 'admb':
summary(object, correlation = FALSE,
    symbolic.cor = FALSE, ...)

  ## S3 method for class 'summary.admb':
print(x,
    digits = max(3, getOption("digits") - 3),
    symbolic.cor = x$symbolic.cor,
    signif.stars = getOption("show.signif.stars"), ...)

  ## S3 method for class 'admb':
logLik(object, ...)

  ## S3 method for class 'admb':
coef(object, type = "fixed", ...)

  ## S3 method for class 'admb':
vcov(object, type = "fixed", ...)

  stdEr(object, ...)

  ## S3 method for class 'admb':
stdEr(object, type = "fixed", ...)

  ## S3 method for class 'admb':
deviance(object, ...)

Arguments

x
an ADMB model fit (of class "admb")
object
an ADMB model fit (of class "admb")
k
penalty value for AIC fits
type
which type of parameters to report. Character vector, including one or more of "fixed" or "par" (standard, fixed-effect parameters); "random" (random effect parameters); "rep" (report variables); "sdrpt" (sdreport variables); "extra" (report a
parm
(currently ignored: FIXME) select parameters
level
alpha level for confidence interval
method
(character): "default" or "quad", quadratic (Wald) intervals based on approximate standard errors; "profile", profile CIs (if profile was computed); "quantile", CIs based on quantiles of the MCMC-generated posterior density (if MCMC was comput
correlation
currently unused parameter
symbolic.cor
currently unused parameter
verbose
show messages
...
other parameters (for S3 generic compatibility)
digits
number of digits to display
signif.stars
show significance stars?

Value

  • Extracts appropriate values: numeric (scalar) for AIC, type logLik for logLik, numeric vector of coefficients, numeric variance-covariance matrix of parameter estimates

Examples

Run this code
admbex <- system.file("doc","Reedfrog_runs.RData",package="R2admb")
 load(admbex)
 m1
 coef(m1)
 summary(m1)
 coef(summary(m1)) ## returns just z-table
 AIC(m1)
 vcov(m1)
 logLik(m1)
 deviance(m1)
 stdEr(m1)

Run the code above in your browser using DataLab