data(ITS1, ITS2)
data <- list(ITS1=ITS1, ITS2=ITS2)
# show percent variation for only ITS1 with default methods
dissim.pvar.plot(data=list(ITS1=ITS1))
## Not run:
# # show clustering for ITS1 and ITS2 for set methods
# dissim.clust.plot(data=data, is.OTU=TRUE, stand.method=NULL,
# dist.methods=c("morisita", "bray"),
# clust.methods=c("average", "centroid"))
# dissim.ord.plot(data=data, is.OTU=TRUE, stand.method="total",
# dist.method="bray")
# # dissim.alleig.plot returns a ggplot2 object:
# my.eig.plot <- dissim.alleig.plot(data)
# class(my.eig.plot) # returns "gg" "ggplot"
# my.eig.plot # view the plot
# # update the title, then view the updated plot
# my.eig.plot <- my.eig.plot + ggtitle("My New Title")
# # update ggplot theme
# require("grid")
# new_theme <-RAM.color()
# my.eig.plot <- my.eig.plot + new_theme
# my.eig.plot
# # save an image (named file.pdf) with GOF values for ITS1 and
# # ITS2, using default methods
# dissim.GOF.plot(data=data, file="~/Documents/my/file")
# ## End(Not run)
Run the code above in your browser using DataLab