## Not run:
# PATH <- path.package("RDML")
# filename <- paste0(PATH, "/extdata/", "stepone_std.rdml")
# cfx96 <- RDML$new(filename)
# ## Use plotCurves function from the chipPCR package to
# ## get an overview of the amplification curves
# library(chipPCR)
# ## Extract all qPCR data
# tab <- cfx96$AsTable()
# tab2 <- tab
# tab2$run.id <- "cpp"
# cfx96.qPCR <- cfx96$GetFData(tab)
# cpp <- cbind(cyc = cfx96.qPCR[, 1],
# apply(cfx96.qPCR[, -1], 2,
# function(y) CPP(x = cfx96.qPCR[, 1], y = y)$y.norm))
# cfx96$SetFData(cpp, tab2)
# library(ggplot2)
# library(gridExtra)
# cfx96.gg <- cfx96$GetFData(tab, long.table = TRUE)
# cpp.gg <- cfx96$GetFData(tab2,
# long.table = TRUE)
# plot1 <- ggplot(cfx96.gg, aes(x = cyc, y = fluo,
# group=fdata.name)) +
# geom_line() +
# ggtitle("Raw data")
# plot2 <- ggplot(cpp.gg, aes(x = cyc, y = fluo,
# group=fdata.name)) +
# geom_line() +
# ggtitle("CPP processed data")
# grid.arrange(plot1, plot2, nrow=2)
# ## End(Not run)
Run the code above in your browser using DataLab