Learn R Programming

RJaCGH (version 1.1.1)

trace.plot: Trace plot for 'RJaCGH' object

Description

A trace plot with the trajectory of the Markov Chain.

Usage

trace.plot(obj, k = NULL, array = NULL, Chrom = NULL, main.text = NULL)

Arguments

obj
any of RJaCGH, RJaCGH.Chrom, RJaCGH.genome, RJaCGH.array objects
k
Model to plot (i.e., number of hidden states). If NULL, the most visited is taken.
array
if obj is 'RJaCGH.array', the name of the array to plot must be given.
Chrom
if obj is 'RJaCGH.Chrom', the number of the chromosome to plot must be given.
main.text
Main text of the plot

Details

This is simply a call to matplot to show the values sampled in the chain. The colors does not correspond to any particular level of gain/loss. A plot is drawn. Oscar M. Rueda and Ramon Diaz Uriarte. A flexible, accurate and extensible statistical method for detecting genomic copy-number changes. http://biostats.bepress.com/cobra/ps/art9/. {http://biostats.bepress.com/cobra/ps/art9/}. [object Object],[object Object]

RJaCGH, summary.RJaCGH, model.averaging, plot.RJaCGH, states, gelman.brooks.plot, collapseChain

y <- c(rnorm(100, 0, 1), rnorm(10, -3, 1), rnorm(20, 3, 1), rnorm(100, 0, 1)) Pos <- sample(x=1:500, size=230, replace=TRUE) Pos <- cumsum(Pos) Chrom <- rep(1:23, rep(10, 23)) jp <- list(sigma.tau.mu=rep(0.5, 5), sigma.tau.sigma.2=rep(0.3, 5), sigma.tau.beta=rep(0.7, 5), tau.split.mu=0.5, tau.split.beta=0.5) fit.genome <- RJaCGH(y=y, Pos=Pos, Chrom=Chrom, model="genome", burnin=10, TOT=100, jump.parameters=jp, k.max = 5) trace.plot(fit.genome) models