# NOT RUN {
n <- 200 # Number of patients
m <- 1000 # Number of SNPs
set.seed(123)
G <- matrix(rnorm(n*m), n, m) # Normalized SNP expression levels
rsids <- paste0("rs", 1:m) # SNP rsIDs
colnames(G) <- rsids
K <- 10 # Number of SNP sets
genes <- paste0("XYZ", 1:K) # Gene names
gsets <- lapply(sample(3:50, size=K, replace=TRUE), sample, x=rsids)
names(gsets) <- genes
# Survival outcome
time <- rexp(n, 1/10) # Survival time
event <- rbinom(n, 1, 0.9) # Event indicator
res <- rsnpset(Y=time, delta=event, G=G, snp.sets=gsets, score="cox")
head(res)
summary(res)
rsnpset.pvalue(res, qfun=function(x) NA) # q-values suppressed for small sample size (K = 10)
# }
# NOT RUN {
# Optional parallel backend
library(doParallel)
registerDoParallel(cores=8)
res <- rsnpset(Y=time, delta=event, G=G, snp.sets=gsets, score="cox", B=1000)
rsnpset.pvalue(res)
# }
# NOT RUN {
# Binary outcome
set.seed(123)
Y <- rbinom(n, 1, 0.5)
head(rsnpset(Y=Y, G=G, snp.sets=gsets, score="binomial", v.method="empirical"))
head(rsnpset(Y=Y, G=G, snp.sets=gsets, score="binomial", v.method="asymptotic"))
# }
Run the code above in your browser using DataLab