# NOT RUN {
n <- 200 # Number of patients
m <- 1000 # Number of SNPs
set.seed(123)
G <- matrix(rnorm(n*m), n, m) # Normalized SNP expression levels
rsids <- paste0("rs", 1:m) # SNP rsIDs
colnames(G) <- rsids
K <- 15 # Number of SNP sets
genes <- paste0("XYZ", 1:K) # Gene names
gsets <- lapply(sample(3:50, size=K, replace=TRUE), sample, x=rsids)
names(gsets) <- genes
# Survival outcome
time <- rexp(n, 1/10) # Survival time
event <- rbinom(n, 1, 0.9) # Event indicator
# }
# NOT RUN {
# Optional parallel backend
library(doParallel)
registerDoParallel(cores=8)
# }
# NOT RUN {
# B >= 1000 is typically recommended
res <- rsnpset(Y=time, delta=event, G=G, snp.sets=gsets, score="cox",
B=50, r.method="permutation", ret.rank=TRUE)
pvals <- rsnpset.pvalue(res, pval.transform=TRUE)
summary(pvals)
summary(pvals, sort="W", decreasing=TRUE, nrows=5, dropcols=c("p","rank"), verbose=TRUE)
# }
Run the code above in your browser using DataLab