Learn R Programming

RSPS (version 1.0)

negbin.pow: Estimates power for given sample size using simulation from Negative Binomial distribution

Description

The function provides estimate of power for given sample size when there is over-dispersion. The data is simulated from Negative Binomial distribution.

Usage

negbin.pow(n, lambda1, k, disp, alpha, seed, numsim, monitor, sig)

Arguments

n
A vector of positive integers representing the sample size
lambda1
Mean count under the null distribution. It can be a vector.
k
Fold change desired under the alternative distribution. It can be a vector.
disp
The over-dispersion parameter. 1 represent no pver-dispersion and values above one represent over-dispersion.
alpha
Type I error rate: a value between 0 and 1. It can be a vector.
seed
Value of seed to ensure reproducibility of results.
numsim
Number of simulations. 1000 is recommended.
monitor
If TRUE, it allows us to view the progress of the function.
sig
Number of significant digits after decimal.

Value

Mean.Null
Mean Count under Null distribution.
Effect.Size
Fold Change Under the alternate hypothesis.
Disp.Par
Over-dispersion parameter.
Power
Estimated Power.
Std.Err
Standard Error.

Details

The test statistic used is the scaled difference. Please contact the authors for more details on algorithm.

References

None

See Also

rnbinom

Examples

Run this code
power.negbin <- negbin.pow(n=c(5,10),lambda1=c(3,5),
k=c(2,3),disp=2,alpha=0.001,seed = 20,
numsim=100,monitor=TRUE)
power.plot(power.negbin)
# Another example (takes longer to run)
#power.negbin <- negbin.pow(n=c(3,5,10,15),lambda1=c(3,5),
#k=c(2,2.5,3),disp=2,alpha=0.001,seed = 20,
#numsim=1000,monitor=TRUE)
#head(power.negbin)

Run the code above in your browser using DataLab