lda
), Partial Least Squares - Discriminant Analysis (from plsda
) and Correspondence Discriminant Analysis (from discrimin.coa
) are handled.DA.confusion(model, train = 2/3, crit.lda = c("plug-in", "predictive","debiased"),
crit.plsda = c("mahalanobis.dist", "centroids.dist", "max.dist"),
crit.cda = c("mahalanobis", "euclidian"))
"plug-in"
(the default) the usual unbiased parameter estimates are used and assumed to be correct. With "debiased"
an unbiased estimator of the"mahalanobis.dist"
(default), "centroids.dist"
or "max.dist"
."mahalanobis"
(default) or "euclidian"
.used
) and the total number of individuals (total
).model
(they are not evaluated from the training dataset itself).lda
, predict.lda
, plsda
, predict.plsda
, discrimin.coa
, predict.coadisc
# With a LDA
require(MASS)
data(iris)
model.LDA <- lda(iris[,1:4],iris$Species)
DA.confusion(model.LDA)
Run the code above in your browser using DataLab