lda), Partial Least Squares - Discriminant Analysis (from plsda) and Correspondence Discriminant Analysis (from discrimin.coa) are handled.DA.confusion(model, train = 2/3, crit.lda = c("plug-in", "predictive","debiased"),
crit.plsda = c("mahalanobis.dist", "centroids.dist", "max.dist"),
crit.cda = c("mahalanobis", "euclidian"))"plug-in" (the default) the usual unbiased parameter estimates are used and assumed to be correct. With "debiased" an unbiased estimator of the"mahalanobis.dist" (default), "centroids.dist" or "max.dist"."mahalanobis" (default) or "euclidian".used) and the total number of individuals (total).model (they are not evaluated from the training dataset itself).lda, predict.lda, plsda, predict.plsda, discrimin.coa, predict.coadisc# With a LDA
require(MASS)
data(iris)
model.LDA <- lda(iris[,1:4],iris$Species)
DA.confusion(model.LDA)Run the code above in your browser using DataLab