RFcov
returns the values of a covariance function;
RFvariogram
returns the values of a variogram;
RFpseudovariogram
returns the values of a pseudovariogram;
RFcovmatrix
returns the covariance matrix for a set of points
RFfctn
returns the values of a shape function;
RFcov(model, x, y = NULL, z = NULL, T = NULL, grid, distances, dim, ...)
RFvariogram(model, x, y = NULL, z = NULL, T = NULL, grid, distances, dim, ...)
RFpseudovariogram(model, x, y = NULL, z = NULL, T = NULL, grid, distances, dim, ...)
RFcovmatrix(model, x, y = NULL, z = NULL, T = NULL, grid, distances, dim,...)
RFfctn(model, x, y = NULL, z = NULL, T = NULL, grid, distances, dim,...)
RMmodel
;
the covariance or variogram model, which is to be evaluateddim=1
then x
is a vector. x
RFcovmatrix
is
used; the lower triangular part of the distance matrix column-wise;
equivalently the upper triangular part of the distance matrix row-wise;
either x
or distances
must be missingRFcov
(RFcovmatrix
)
and arguments passed to RFoptions
RFcov
returns a vector of values of the covariance
function.RFvariogram
returns a vector of values of the variogram model.RFpseudovariogram
returns a vector of values of the variogram model.RFcovmatrix
returns a covariance matrix.
RFcovmatrix
returns a covariance matrix. Here a matrix of
of coordinates (x
) or a vector or a matrix of distances
is expected.
RFcovmatrix
allows also for variogram models. Then the negative of the
variogram matrix is returned.
RMmodel
,
RFsimulate
,
RFfit
.
RFcalc
.
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
# locations:
x <- matrix(runif(15), ncol=3)
# coordinate matrix of 5 arbitrary points
# p1, p2, p3, p4, p5 in 3-dimensional space
y <- matrix(runif(15),ncol=3)
# coordinate matrix of 5 arbitrary points
# q1, q2, q3, q4, q5 in 3-dimensional space
#####################################################
# get available models
RFgetModelNames(type=c("tail correlation", "positive definite",
"variogram", "shape function", "trend"))
#####################################################
# Example 1: a stationary covariance model
model <- RMexp()
# covariance only depends on differences
# of locations hi=pi-qi in 3-dimensional space
# therefore, the following 2 commands yield the same
RFcov(model=model, x=x, y=y)
RFcov(model=model, x=x-y)
# yields 5 values C(hi)=C(pi,qi) for i=1,2,3,4,5
##################################################
# Example 2: get covariance matrix C(x_i,x_j)
# at given locations x_i, i=1,...,n
#
# here for an isotropic stationary covariance model
# yields a 4 times 4 covariance matrix of the form
# C(0) C(5) C(3) C(2.5)
# C(5) C(0) C(4) C(2.5)
# C(3) C(4) C(0) C(2.5)
# C(2.5) C(2.5) C(2.5) C(0)
model <- RMexp() # the covariance function C(x,y)=C(r) of this model
# depends only on the distance r between x and y
RFcovmatrix(model=model, distances=c(5,3,2.5,4,2.5,2.5), dim=4)
######################################################
# Example 3: distinguish the different uses of x and y
x <- c(1,2,1)
y <- c(4,5,6)
# coordinate space 1-dimensional, evaluated at 3 points:
RFcov(model=model, x=as.matrix(x), y=as.matrix(y))
# coordinate space is 3-dimensional, evaluated at a pair of points
RFcov(model=model, x=t(x), y=t(y))
Run the code above in your browser using DataLab