# NOT RUN {
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
Correlation = 0.85,
N = 10000,
ID = 2,
ZIP = 0,
AddDate = FALSE,
Classification = FALSE,
MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostRegression(
# GPU or CPU and the number of available GPUs
task_type = "GPU",
NumGPUs = 1,
# Metadata args
ModelID = "Test_Model_1",
model_path = normalizePath("./"),
metadata_path = normalizePath("./"),
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
ReturnModelObjects = TRUE,
# Data args
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
Weights = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in%
c("IDcol_1", "IDcol_2","Adrian")],
PrimaryDateColumn = NULL,
DummifyCols = FALSE,
IDcols = c("IDcol_1","IDcol_2"),
TransformNumericColumns = "Adrian",
Methods = c("BoxCox", "Asinh", "Asin", "Log",
"LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
# Model evaluation
eval_metric = "RMSE",
eval_metric_value = 1.5,
loss_function = "RMSE",
loss_function_value = 1.5,
MetricPeriods = 10L,
NumOfParDepPlots = ncol(data)-1L-2L,
EvalPlots = TRUE,
# Grid tuning args
PassInGrid = NULL,
GridTune = FALSE,
MaxModelsInGrid = 30L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 60*60,
Shuffles = 4L,
BaselineComparison = "default",
# ML args
langevin = FALSE,
diffusion_temperature = 10000,
Trees = 1000,
Depth = 6,
L2_Leaf_Reg = 3.0,
RandomStrength = 1,
BorderCount = 128,
LearningRate = NULL,
RSM = 1,
BootStrapType = NULL,
GrowPolicy = "SymmetricTree",
model_size_reg = 0.5,
feature_border_type = "GreedyLogSum",
sampling_unit = "Group",
subsample = NULL,
score_function = "Cosine",
min_data_in_leaf = 1)
# Output
TestModel$Model
TestModel$ValidationData
TestModel$EvaluationPlot
TestModel$EvaluationBoxPlot
TestModel$EvaluationMetrics
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$ShapValuesDT
TestModel$VI_Plot
TestModel$PartialDependencePlots
TestModel$PartialDependenceBoxPlots
TestModel$GridList
TestModel$ColNames
TestModel$TransformationResults
# }
Run the code above in your browser using DataLab